Investigation on Hydroplaning Behaviors of a Patterned Tire on a Steel Bridge Deck Pavement
Abstract
:1. Introduction
2. Modeling of 3D-Patterned Tire
2.1. Material Parameter Acquisitions of Tire
2.1.1. Rubber Materials
2.1.2. Rubber-Cord Composite Materials
2.2. Tire Modeling and Model Validation
2.3. Grounding Characteristics of Tire on SBDP
3. Tire–Fluid–Pavement Interaction Model
3.1. D Asphalt Pavement Model
3.2. Fluid Model
3.3. Hydroplaning Analysis
4. Hydroplaning Behaviors on SBDP
4.1. Fluid Imprint and Tire Force Analysis during the Hydroplaning
4.2. Impact Analysis of Hydroplaning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horne, W.B.; Joyner, U.T. Pneumatic tire hydroplaning and some effects on vehicle performance. SAE Tech. Pap. Ser. 1965, 650145, 1–28. [Google Scholar]
- Ong, G.P.; Fwa, T.F. Transverse pavement grooving against hydroplaning. I: Simulation model. J. Transp. Eng. 2006, 132, 441–448. [Google Scholar] [CrossRef]
- Gallaway, B.M.; Hayes, G.G.; Ivey, D.L.; Ledbetter, W.B.; Olson, R.M. Pavement and Geometric Design Criteria for Minimizing Hydroplaning. A Technical Summary; Final Report; Texas A&M University: College Station, TX, USA, 1979. [Google Scholar]
- Cho, J.R.; Lee, H.W.; Sohn, J.S.; Kim, G.J.; Woo, J.S. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire. Eur. J. Mech. A-Solid. 2006, 25, 914–926. [Google Scholar] [CrossRef]
- Kim, T.-W.; Jeong, H.-Y. Hydroplaning simulations for tires using FEM, FVM and an asymptotic method. Int. J. Autom. Technol. 2010, 11, 901–908. [Google Scholar] [CrossRef]
- Li, Y.; Cai, J.; Zong, Y.M. Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition. J. Traffic Transp. Eng. 2017, 17, 90–101. (In Chinese) [Google Scholar]
- Ong, G.P.; Fwa, T.F.; Guo, J. Modeling hydroplaning and effects of pavement microtexture. Transp. Res. Rec. 2005, 1905, 166–176. [Google Scholar] [CrossRef]
- Ong, G.P.; Fwa, T.F. Wet-pavement hydroplaning risk and skid resistance: Modeling. J. Transp. Eng. 2007, 133, 590–598. [Google Scholar] [CrossRef]
- Chen, T.; Ma, T.; Huang, X.; Ma, S.; Tang, F.; Wu, S. Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. J. Clean. Prod. 2020, 263, 121467. [Google Scholar] [CrossRef]
- Hu, J.; Qian, Z.D.; Liu, P.F.; Wang, D.W.; Oeser, M. Investigation on the permeability of porous asphalt concrete based on microstructure analysis. Int. J. Pavement Eng. 2020, 21, 1683–1693. [Google Scholar] [CrossRef]
- Wang, G.T.; Chen, X.Q.; Dong, Q.; Yuan, J.W.; Hong, Q.Z. Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. J. Clean. Prod. 2020, 262, 121208. [Google Scholar] [CrossRef]
- Srirangam, S.K.; Anupam, K.; Scarpas, A.; Kasbergen, C.; Kane, M. Safety Aspects of Wet Asphalt Pavement Surfaces Through Field and Numerical Modeling Investigations. Transp. Res. Rec. 2014, 2446, 37–51. [Google Scholar] [CrossRef]
- Srirangam, S.K.; Anupam, K.; Scarpas, A.; Kasbergen, C. Development of a thermomechanical tyre-pavement interaction model. Int. J. Pavement Eng. 2015, 16, 721–729. [Google Scholar] [CrossRef]
- Anupam, K.; Srirangam, S.K.; Scarpas, A.; Kasbergen, C.; Kane, M. Study of Cornering Maneuvers of a Pneumatic Tire on Asphalt Pavement Surfaces Using the Finite Element Method. Transp. Res. Rec. 2014, 2457, 129–139. [Google Scholar] [CrossRef]
- Zhu, S.Z. Numerical Simulation of Tire Skid Resistance Based on Pavement Macro-Texture. Ph.D. Thesis, Southeast University, Nanjing, China, 2017. (In Chinese). [Google Scholar]
- Zhu, S.Z.; Liu, X.Y.; Cao, Q.Q.; Huang, X.M. Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient. Adv. Mater. Sci. Eng. 2017, 2017, 5843061. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.D.; Liu, Y.; Liu, C.B.; Zheng, D. Design and skid resistance evaluation of skeleton-dense epoxy asphalt mixture for steel bridge deck pavement. Constr. Build. Mater. 2016, 114, 851–863. [Google Scholar] [CrossRef]
- Zhang, X.N.; Zhang, S.X.; Xu, W.; Huang, Z.Y.; Wu, W.L.; Yuan, M.M. Application performance-based design of epoxy asphalt concrete applied to steel bridge deck pavement. J. South China Univ. Technol. 2012, 40, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Z.D.; Hu, J.; Jin, L. Temperature behavior and stability analysis of orthotropic steel bridge deck during gussasphalt pavement paving. J. Bridge Eng. 2018, 23, 04017117. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Z.D.; Zhang, M. Fatigue damage analysis of epoxy asphalt pavement for steel bridges considering coupled effects of heavy load and temperature variations. J. Southeast Univ. 2017, 33, 478–483. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.R.; Xia, Y.M.; Li, W. Finite element analysis for effects of aspect ratio on passenger car radial tire. Chin. Q. Mech. 2007, 28, 209–216. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, H.C. Investigate into influence of tire tread pattern on noise and hydroplaning and synchronously improving methods. Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2013. (In Chinese). [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Tensile Properties of Plastics (ASTM D638); ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Li, W.; Xia, Y.; Xia, C.G.; Xia, Y.M.; Liang, L.; Chao, Y.; Guo, Y.; Liu, K. An experimental study on the tensile mechanical behavior of steel cords for radial tires. J. Exp. Mech. 2002, 17, 307–314. (In Chinese) [Google Scholar] [CrossRef]
- Qian, Z.D.; Liu, Y.; Huang, W. Analysis of the dynamic response of steel-deck pavement with roughness. China Civ. Eng. J. 2007, 40, 49–53. (In Chinese) [Google Scholar] [CrossRef]
- Hu, J.; Qian, Z.D.; Xue, Y.C.; Yang, Y.M. Investigation on fracture performance of lightweight epoxy asphalt concrete based on microstructure characteristics. J. Mater. Civ. Eng. 2016, 28, 04016084. [Google Scholar] [CrossRef]
- Hu, J.; Qian, Z.D.; Liu, Y.; Zhang, M. High-temperature failure in asphalt mixtures using micro-structural investigation and image analysis. Constr. Build. Mater. 2015, 84, 136–145. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Jiang, J.W.; Ni, F.J.; Zhou, L. Fatigue Cracking Resistance of Engineered Cementitious Composites (ECC) under Working Condition of Orthotropic Steel Bridge Decks Pavement. Appl. Sci. 2019, 9, 3577. [Google Scholar] [CrossRef] [Green Version]
- Kutay, M.E.; Arambula, E.; Gibson, N.; Youtcheff, J. Three-dimensional image processing methods to identify and characterise aggregates in compacted asphalt mixtures. Int. J. Pavement Eng. 2010, 11, 511–528. [Google Scholar] [CrossRef]
- Wu, Z.D.; Zong, Z.; Sun, L. Mie-Gruneisen mixture Eulerian model for underwater explosion. Eng. Comput. 2014, 31, 425–452. [Google Scholar] [CrossRef]
- Oh, C.W.; Kim, T.W.; Jeong, H.Y.; Park, K.S.; Kim, S.N. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method. J. Mech. Sci. Technol. 2008, 22, 34–40. [Google Scholar] [CrossRef]
Rubber Types | Tread | Cap Ply | Belt Ply | Carcass | Inside Liner | Sidewall | Bead Filler |
---|---|---|---|---|---|---|---|
Density (kg/m3) | 1150 | 1148 | 1205 | 1124 | 1254 | 1105 | 1216 |
C10 | 0.7052 | 0.9950 | 1.0233 | 0.6711 | 0.3586 | 0.6582 | 1.3385 |
C20 | −0.1802 | −0.2127 | −0.2860 | −0.1640 | −0.1037 | −0.1584 | −0.3187 |
C30 | 0.0652 | 0.1168 | 0.1168 | 0.0564 | 0.0262 | 0.0448 | 0.1520 |
Cord Materials | Density (kg/m3) | Angle with the Radial Surface of Tire (°) | Sectional Area (mm2) | Distance (mm) | Tensile Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
Carcass | 1350 | 0 | 0.24 | 0.9 | 9597 | 0.29 |
The first belt ply | 7800 | 63 | 0.21 | 1.4 | 195,351 | 0.29 |
The second belt ply | 7800 | 117 | 0.21 | 1.4 | 195,351 | 0.29 |
Cap ply | 1150 | 90 | 0.24 | 0.7 | 9907 | 0.30 |
Tire bead | 7800 | 90 | 0.72 | 1.05 | 170,000 | 0.29 |
OSBD Length (m) | OSBD Width (m) | Deck Thickness (mm) | Pavement Thickness (mm) | Diaphragm Thickness (mm) | Diaphragm Distance (m) | |||
9.6 | 4.5 | 14 | 55 | 12 | 3.2 | |||
U-rib | Steel | Pavement | ||||||
Top Width (mm) | Bottom Width (mm) | Height (mm) | Distance (mm) | Thickness (mm) | Modulus (MPa) | Poisson’s Ratio | Modulus (MPa) | Poisson’s Ratio |
300 | 180 | 280 | 380 | 6 | 210000 | 0.3 | 950 | 0.2 |
Parameters | Values |
---|---|
ρ0/kg·m−3 | 1000 |
c0/m·s−1 | 1484 |
S | 1.979 |
Γ0 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Qian, Z.; Liu, C.; Huang, Q. Investigation on Hydroplaning Behaviors of a Patterned Tire on a Steel Bridge Deck Pavement. Appl. Sci. 2021, 11, 10566. https://doi.org/10.3390/app112210566
Liu Y, Qian Z, Liu C, Huang Q. Investigation on Hydroplaning Behaviors of a Patterned Tire on a Steel Bridge Deck Pavement. Applied Sciences. 2021; 11(22):10566. https://doi.org/10.3390/app112210566
Chicago/Turabian StyleLiu, Yang, Zhendong Qian, Changbo Liu, and Qibo Huang. 2021. "Investigation on Hydroplaning Behaviors of a Patterned Tire on a Steel Bridge Deck Pavement" Applied Sciences 11, no. 22: 10566. https://doi.org/10.3390/app112210566
APA StyleLiu, Y., Qian, Z., Liu, C., & Huang, Q. (2021). Investigation on Hydroplaning Behaviors of a Patterned Tire on a Steel Bridge Deck Pavement. Applied Sciences, 11(22), 10566. https://doi.org/10.3390/app112210566