Determination of the Reference Temperature for a Convective Heat Transfer Coefficient in a Heated Tube Bank
Abstract
1. Introduction
2. Numerical Investigation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Wang, M.; Liu, H.; Chen, W.; Qian, S. Numerical Analysis on Heat Transfer Enhancement of Wavy Fin-Tube Heat Exchangers for Air-Conditioning Applications. Appl. Therm. Eng. 2021, 199, 117597. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Jin, Z.; Wang, K. Characteristics of Heat Transfer for Tube Banks in Crossflow and its Relation with that in Shell-and-Tube Heat Exchangers. Int. J. Heat Mass Transf. 2016, 93, 584–594. [Google Scholar] [CrossRef]
- Amatachaya, P.; Krittacom, B. Combustion Mechanism of Gas Porous Burner Installed an In-Line Tube-Bank Heat Exchanger. Energy Procedia 2017, 138, 50–55. [Google Scholar] [CrossRef]
- Gu, L.D.; Min, J.C. Airside Thermal-Hydraulic Characteristics for Tube Bank Heat Exchangers Used to Cool Compressor Bleed Air in an Aero Engine. Appl. Therm. Eng. 2018, 141, 939–947. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, H.; Shu, G.; Yu, G.; Ma, X.; Li, X. Simulation and Optimization of Metal-foam Tube Banks for Heat Transfer Enhancement of Exhaust Heat Exchangers. Energy Procedia 2017, 142, 3863–3869. [Google Scholar] [CrossRef]
- Kang, H.C.; Eoh, J.H.; Cha, J.E.; Kim, S.O. Numerical Study on Pressure Drop and Heat Transfer for Designing Sodium-to-Air Heat Exchanger Tube Banks on Advanced Sodium-Cooled Fast Reactor. Nucl. Eng. Des. 2013, 254, 5–15. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Mehmandoust, B.; Fazilati, M.A.; Eftekhari, S.A. Comprehensive Study on Hydrogen Production via Propane Steam Reforming Inside a Reactor. Energy Rep. 2021, 7, 929–941. [Google Scholar] [CrossRef]
- El-Shorbagy, M.A.; Eslami, F.; Ibrahim, M.; Barnoon, P.; Xia, W.F.; Toghraie, D. Numerical Investigation of Mixed Convection of Nanofluid Flow in a Trapezoidal Channel with Different Aspect Ratios in the Presence of Porous Medium. Case Stud. Therm. Eng. 2021, 25, 100977. [Google Scholar] [CrossRef]
- Bairi, A. Porous Materials Saturated with Water-Copper Nanofluid for Heat Transfer Improvement between Vertical Concentric Cones. Int. Commun. Heat Mass Transf. 2021, 126, 105439. [Google Scholar] [CrossRef]
- Miles, A.; Bessaih, R. Heat Transfer and Entropy Generation Analysis of Three-Dimensional Nanofluids Flow in a Cylindrical Annulus Filled with Porous Media. Int. Commun. Heat Mass Transf. 2021, 124, 105240. [Google Scholar] [CrossRef]
- Grimison, E.D. Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross Flow of Gases over Tube Banks. Trans. ASME 1937, 59, 583–594. [Google Scholar]
- Pierson, O.L. Experimental Investigation of the Influence of Tube Arrangement on Convection Heat Transfer and Flow Resistance in Cross Flow of Gases over Tube Banks. Trans. ASME 1937, 59, 563–572. [Google Scholar]
- Huge, E.C. Experimental Investigation of Effects of Equipment Size on Connection Heat Transfer and Flow Resistance in Cross Flow of Gases over Tube Banks. Trans. ASME 1937, 59, 573–581. [Google Scholar]
- Brevoort, M.J.; Tifford, A.N. An Experimental Investigation of Flow across Tube Banks; ARR (WR L-232); Langley Aeronautical Laboratory: Washington, WA, USA, 1942; pp. 1–10. [Google Scholar]
- McAdams, W.H. Heat Transmission; McGraw-Hill Company: New York, NY, USA, 1942. [Google Scholar]
- Schmidt, F.; Werner, K. Heat Transfer over the Circumference of a Heated Cylinder in Transverse Flow; Technical Memo (1050); National Advisory Committee for Aeronautics: Washington, WA, USA, 1943. [Google Scholar]
- Kays, W.M.; Lo, R.K. Basic Heat Transfer and Flow Friction Design Data for Gas Flow Normal to Banks of Staggered Tubes; Stanford University: Stanford, CA, USA, 1952; pp. 1–74. [Google Scholar]
- Welch, C.P.; Fairchild, H.N. Individual Row Heat Transfer in a Crossflow: In-line Tube Bank. Trans. ASME 1964, 86, 143–148. [Google Scholar] [CrossRef]
- Samoshka, P.S.; Makaryavichyus, V.I.; Shlachyauskas, A.A.; Zhyughda, I.I.; Žukauskas, A. Heat Transfer and Pressure Drop for Closely Spaced Tube Banks in Water Flow. Int. Chem. Eng. 1968, 18, 388–392. [Google Scholar]
- Žukauskas, A. Heat Transfer from Tubes in Crossflow. Adv. Heat Transf. 1972, 8, 93–160. [Google Scholar]
- Žukauskas, A.; Ulinskas, R.V. Heat Transfer Efficiency of Tube Bundles in Crossflow at Critical Reynolds Numbers. Heat Transf. -Sov. Res. 1978, 10, 9–15. [Google Scholar]
- Žukauskas, A.; Ulinskas, R.V. Heat Transfer in Tube Banks in Crossflow; Hemisphere: New York, NY, USA, 1988. [Google Scholar]
- Hausen, H. Heat Transfer in Counterflow Parallel Flow and Cross Flow; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Ramezanpour, A.; Mirzaee, I.; Rahmani, R.; Shirvani, H. Numerical Study of Staggered Tube Bundle in Turbulent Cross Flow for an Optimum Arrangement. Int. J. Heat Exch. 2006, 7, 37–56. [Google Scholar]
- Khan, W.A.; Culham, J.R.; Yovanovich, M.M. Analytical Model for Convection Heat Transfer from Tube Banks. J. Thermophys. Heat Transf. 2006, 20, 720–727. [Google Scholar] [CrossRef][Green Version]
- Khan, W.A.; Culham, J.R.; Yovanovich, M.M. Convection Heat Transfer from Tube Banks in Crossflow: Analytical Approach. Int. J. Heat Mass Transf. 2006, 49, 4831–4838. [Google Scholar] [CrossRef]
- Haider, M.J.; Danish, S.N.; Khan, W.A.; Mehdi, S.U.; Abbasi, B.A. Heat Transfer and Fluid Flow over Circular Cylinders in Cross Flow. NUST J. Eng. Sci. 2010, 3, 67–77. [Google Scholar]
- Kim, T. Effect of Longitudinal Pitch on Convective Heat Transfer in Crossflow over In-Line Tube Banks. Ann. Nucl. Energy 2013, 57, 209–215. [Google Scholar] [CrossRef]
- Yilmaz, A.; Yilmaz, T. Optimum Design of Cross-Flow In-Line Tube Banks at Constant Wall Temperature. Heat Transf. Eng. 2015, 37, 523–534. [Google Scholar] [CrossRef]
- Yilmaz, A.; Erdinc, M.T.; Yilmaz, T. Optimization of Crossflow Staggered Tube Banks for Prescribed Pressure Loss and Effectiveness. J. Thermophys. Heat Transf. 2017, 31, 4. [Google Scholar] [CrossRef]
- Niemelä, N.P.; Mikkonen, A.; Lampio, K.; Konttinen, J. Computational Fluid Dynamics Based Approach for Predicting Heat Transfer and Flow Characteristics of Inline Tube Banks with Large Transverse Spacing. Heat Transf. Eng. 2021, 42, 270–281. [Google Scholar] [CrossRef]
- Córcoles, J.I.; Marín-Alarcón, E.; Almendros-Ibánez, J.A. Heat Transfer Performance of Fruit Juice in a Heat Exchanger Tube Using Numerical Simulations. Appl. Sci. 2020, 10, 648. [Google Scholar] [CrossRef]
- Beale, S.B. Fluid Flow and Heat Transfer in Tube Banks. Ph.D. Thesis, University of London, London, UK, 1993. [Google Scholar]
- Ge, Y.; Lin, Y.; Tao, S.; He, Q.; Chen, B.; Huang, S.M. Shape Optimization for a Tube Bank Based on the Numerical Simulation and Multi-Objective Genetic Algorithm. Int. J. Therm. Sci. 2021, 161, 106787. [Google Scholar] [CrossRef]
- Gnielinski, V. Wärmeübergang bei Querströmung durch einzelne Rohrreihen und durch Rohrbündel; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Bergelin, O.P.; Leighton, M.D.; Lafferty, W.L.; Pigford, R.L. Heat Transfer and Pressure Drop during Viscous and Turbulent Flow across Baffled and Unbaffled Tube Banks; Engineering Experiment Station Bulletin 4; University of Delaware: Newark, DE, USA, 1958. [Google Scholar]
- Le Feuvre, R.F. Laminar and Turbulent Forced Convection Processes through In-Line Tube Banks. Ph.D. Thesis, University of London, London, UK, 1973. [Google Scholar]
- Massey, T.H. The Prediction of Flow and Heat Transfer in Banks of Tubes in Cross-Flow. Ph.D. Thesis, Central Electricity Research Laboratories, Surrey, UK, 1976. [Google Scholar]
- Castro, L.L.; Aranda, A.; Urquiza, G. Analysis of Heat Transfer in an Experimental Heat Exchanger Using Numerical Simulation. In Numerical Simulation—From Brain Imaging to Turbulent Flows; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef][Green Version]
- Mangrulkar, C.h.K.; Dhoble, A.S.; Pant, P.K.; Kumar, N.; Gupta, A.; Chamoli, S. Thermal Performance Escalation of Cross Flow Heat Exchanger using In-Line Elliptical Tubes. Exp. Heat Transf. 2019, 33, 587–612. [Google Scholar] [CrossRef]
- Muzaffar, A.; Cheema, T.A.; Abbas, A.; Tayyab, M.; Ilyas, M.; Park, C.h.W. Performance analysis of liquified petroleum gas (LPG) driven half-cycle air conditioning system. Heat Mass Transf. 2020, 56, 3177–3197. [Google Scholar] [CrossRef]
- Unger, S.; Beyer, M.; Pietruske, H.; Szalinski, L.; Hampel, U. Natural Convection Heat Transfer Performance of Additively Manufactured Tube Bundle Heat Exchangers with Novel Fin Design. Heat Mass Transf. 2021, 57, 1193–1203. [Google Scholar] [CrossRef]
- Xu, L.; Chen, H.; Xi, L.; Xiong, Y.; Gao, J.; Li, Y. Flow and Heat Transfer Characteristics of a Staggered Array of Kagome Lattice Structures in Rectangular Channels. Heat Mass Transf. 2021. [Google Scholar] [CrossRef]
- Wang, L.C.; Su, M.; Hu, W.L.; Lin, Z.M.; Wang, L.B.; Wang, Y. The Characteristic Temperature in the Definition of Heat Transfer Coefficient on the Fin Side Surface in Tube Bank Fin Heat Exchanger. Numer. Heat Transf. A 2011, 60, 848–866. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Yuan, W.; Fang, G.; Zhang, X.; Tang, Y.; Wan, Z.; Zhang, S. Heat Transfer and Friction Characteristics of Turbulent Flow through a Circular Tube with Ball Turbulators. Appl. Sci. 2018, 8, 776. [Google Scholar] [CrossRef]
- Engineering Sciences Data Unit. Convective Heat Transfer during Crossflow of Fluids Over Plain Tube Banks, ESDU Data Item No. 7303J. 1973. Available online: https://www.thermopedia.com/content/1212 (accessed on 7 October 2021).
Elements in Adjacent Area | y+ | Average Nu | Error (%) |
---|---|---|---|
960 | 6.153 | 70.012 | - |
1280 | 3.608 | 57.382 | 18.04 |
1600 | 2.178 | 56.582 | 1.39 |
1920 | 2.107 | 56.245 | 0.60 |
2240 | 1.396 | 56.029 | 0.39 |
Denotation | Description |
---|---|
Temperature for ith row in the free stream of the subdomain inlet. | |
Temperature for ith row in the half of the subdomain inlet. | |
Temperature for ith row on the bound of the subdomain inlet. | |
Temperature for ith row in the free stream of the subdomain centre. | |
Temperature for ith row in the half of the subdomain centre. | |
Temperature for ith row at the tube wall. | |
Mass weighted average temperature for ith row at the subdomain inlet. | |
Mass weighted average temperature for ith row at the subdomain centre. | |
LMTD for ith row based on | |
LMTD for ith row based on | |
LMTD for ith row based on | |
LMTD for ith row based on |
Author | C1 | C2 | m | n | p |
---|---|---|---|---|---|
Grimison [11] | 0.229 | - | 0.632 | - | - |
Žukauskas [20,21,22] | - | 0.52 * 0.27 × | 0.5 * 0.63 × | - | - |
Yilmaz [29,30] | - | 0.9 | 5 | 0.5 | 290 |
Hausen [23] | 0.34 | 0.61 | - | - | |
Khan [25,26] | 0.542 | 1.43 | - | - | - |
ESDU [47] | - | 0.742 Δ 0.211 ◊ | 0.431 Δ 0.651 ◊ | - | - |
Author | C1 | C2 | m | n | p |
---|---|---|---|---|---|
Grimison [11] | 0.482 | - | 0.556 | - | - |
Žukauskas [20,21,22] | - | 1.04 * 0.71 × 0.35 ꜝ | 0.4 * 0.5 × 0.6 ꜝ | - | - |
Yilmaz [29,30] | - | 1.04 | 1.84 | 0.125 | 500 |
Hausen [23] | 1.18 | 0.35 | 0.57 | - | - |
Khan [25,26] | 0.567 | 1.61 | - | - | - |
ESDU [47] | - | 1.309 Δ 0.273 ◊ | 0.36 Δ 0.635 ◊ | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotšmíd, S.; Brodnianská, Z. Determination of the Reference Temperature for a Convective Heat Transfer Coefficient in a Heated Tube Bank. Appl. Sci. 2021, 11, 10564. https://doi.org/10.3390/app112210564
Kotšmíd S, Brodnianská Z. Determination of the Reference Temperature for a Convective Heat Transfer Coefficient in a Heated Tube Bank. Applied Sciences. 2021; 11(22):10564. https://doi.org/10.3390/app112210564
Chicago/Turabian StyleKotšmíd, Stanislav, and Zuzana Brodnianská. 2021. "Determination of the Reference Temperature for a Convective Heat Transfer Coefficient in a Heated Tube Bank" Applied Sciences 11, no. 22: 10564. https://doi.org/10.3390/app112210564
APA StyleKotšmíd, S., & Brodnianská, Z. (2021). Determination of the Reference Temperature for a Convective Heat Transfer Coefficient in a Heated Tube Bank. Applied Sciences, 11(22), 10564. https://doi.org/10.3390/app112210564