Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Theory of Planned Behavior
2.1.1. Attitude and Buying Intention
2.1.2. Subjective Norms
2.1.3. Perceived Behavioral Control (PBC)
Country | Authors | Sample/Analysis Method | Constructs Found Significant |
---|---|---|---|
Pakistan | [66] | 673/PLS-SEM/MGA | Warm glow benefits, utilitarian environmental benefits, perceived behavioral control, normative beliefs, eco-literacy, attitude, and subjective norm |
Pakistan | [1] | 289/PLS SEM | Attitude, policy information campaigns, past purchase experience, and PBC |
China | [67] | 1472/Logistic regression/SPSS | Incomes, household size, and dwelling areas |
China | [24] | 305/PLS SEM | Environmental concern, subjective norm, attitude, environmental knowledge, and PBC |
China | [68] | 477/SEM/AMOS | Personal norm, PBC, awareness of consequences, attitude, ascription of responsibility, and subjective norm. |
India | [69] | 300/Multiple Regression/SPSS | Perceived product risk, skepticism towards label claims, price sensitivity, perceived personal inconvenience, and subjective norms |
South-Korea | [70] | 304/Logistic regression/SPSS | Price and eco-label |
Pakistan | [1] | 396/PLS SEM | Innovativeness, PBC, attitude, insecurity, discomfort, and optimism, |
Malaysia | [5] | 210/PLS SEM | Attitude, PBC, and moral norms |
China | [57] | 253/SEM/AMOS | Attitude, PBC, subjective norms, and residual effect |
South-Korea | [9] | 1050/SEM/AMOS | Trust, social responsibility, environmental knowledge, and perceived cost. |
2.1.4. Environmental Concern
2.1.5. Environmental Knowledge
2.1.6. Eco-Labeling
2.1.7. Moderation of Ethical Self-Identity and Environmental Knowledge
3. Materials and Methods
3.1. Sample and Data Collection Procedures
3.2. Development of the Questionnaire
3.3. Statistical Analysis
4. Results
4.1. Demographics Profile
4.2. Measurement Model (Reliability and Validity)
4.3. Testing Normality, Multicollinearity, and Coefficient of Determination
4.4. Confirmatory Factor Analysis and Common Method Bias
Fit Indices | Measurement Values for CFA | Meas. Values for Structural Model | Standards with Sources | |
---|---|---|---|---|
χ2/df | 2.531 | 2.854 | <3 | [109] |
IFI | 0.922 | 0.938 | >0.900 | [110] |
NFI | 0.914 | 0.909 | >0.900 | [110] |
CFI | 0.942 | 0.938 | >0.900 | [111] |
GFI | 0.924 | 0.911 | >0.900 | [110] |
AGFI | 0.918 | 0.904 | >0.900 | [101] |
TLI | 0.933 | 0.926 | ≥0.90 | [112] |
SRMR | 0.055 | 0.061 | <0.080 | [110] |
RMSEA | 0.069 | 0.073 | <0.080 | [112,113] |
4.5. Structural Modeling
4.6. The Moderation of Green Self-Identity and Environmental Knowledge
5. Discussion
6. Implications of the Study
7. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | Source |
---|---|
Eco-Labeling | [45] |
LB1. The energy label is critical when purchasing a household appliance. | |
LB2. When I purchase a household appliance, I carefully read the energy label. | |
LB3. I am more receptive to purchasing a household appliance with a high-energy efficiency rating (above C, i.e., A or B) | |
Buying Intention | [99] |
BI1 I plan to get one that is energy efficient when I need to purchase home appliances. | |
BI2 I intend to make a concerted effort to acquire energy-efficient appliances. | |
BI3 I will switch from conventional to energy-efficient appliances. | |
Perceived Behavioral Control | [68] |
PBC1 Purchasing energy-efficient equipment is simple for me. | |
PBC2 I believe I am financially capable of purchasing energy-efficient appliances. | |
PBC3 Whether or not I choose and acquire energy-efficient appliances in my daily life is entirely up to me. | |
Environmental Concern | [24] |
EC1: The natural balance is precarious and susceptible to disruption. | |
EC2: When humans disturb nature, disastrous results often occur. | |
EC3: To thrive, humans must live in harmony with nature. | |
Environmental Knowledge | [24] |
EK1: I can determine whether the appliances I purchased are environmentally friendly. | |
EK2: I am more knowledgeable about recycling than the average person. | |
EK3: I am well knowledgeable about environmental issues. | |
Subjective Norms | [66] |
SN1: The majority of people who matter to me believe that I should invest in EEHA. | |
SN2: Using energy-efficient appliances is a social trend. | |
SN3: People whose opinion I respect would buy energy-efficient appliances instead of conventional ones. | |
Attitude | [24] |
ATT1: I believe that purchasing EEHA is an excellent habit. | |
ATT2: I believe that purchasing EEHA is a wise investment. | |
AT3: I believe that shopping for EEHA is a satisfying experience. | |
Green Self–Identity | [45,120] |
GSI1: Environmental protection starts with me | |
GSI2: I consider myself a “green consumer.” | |
GSI3: Environmental protection is the government’s responsibility, not mine. |
References
- Ali, S.; Ullah, H.; Akbar, M.; Akhtar, W.; Zahid, H. Determinants of consumer intentions to purchase energy-saving household products in Pakistan. Sustainability 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Yang, S. Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sustain. Energy Rev. 2016, 56, 810–819. [Google Scholar] [CrossRef]
- Ek, K.; Söderholm, P. The devil is in the details: Household electricity saving behavior and the role of information. Energy Policy 2010, 38, 1578–1587. [Google Scholar] [CrossRef]
- Tan, C.-S.; Ooi, H.-Y.; Goh, Y.-N. A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia. Energy Policy 2017, 107, 459–471. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Li, G. Determinants of energy-saving behavioral intention among residents in Beijing: Extending the theory of planned behavior. J. Renew. Sustain. Energy 2014, 6, 53127. [Google Scholar] [CrossRef]
- Mills, B.; Schleich, J. Analysis of Existing Data: Determinants for the Adoption of Energy-Efficient Household Appliances in Germany. In Sustainable Energy Consumption in Residential Buildings; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–67. [Google Scholar]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V.; Fischle, M. Evaluating energy behavior change programs using randomized controlled trials: Best practice guidelines for policymakers. Energy Res. Soc. Sci. 2016, 22, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kwon, S.J. What motivations drive sustainable energy-saving behavior?: An examination in South Korea. Renew. Sustain. Energy Rev. 2017, 79, 494–502. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Kumari, D.R.; Neeraja, T. Purchase Behavior of Women Consumers, towards Energy Efficient Household Products. Doctoral Dissertation, Univeristy Rajendranagar, Hyderabad, India, 2017. [Google Scholar]
- Joshi, G.; Sen, V.; Kunte, M. Do Star Ratings Matter?: A Qualitative Study on Consumer Awareness and Inclination to Purchase Energy-Efficient Home Appliances. Int. J. Soc. Ecol. Sustain. Dev. 2020, 11, 40–55. [Google Scholar] [CrossRef]
- Poortinga, W.; Steg, L.; Vlek, C.; Wiersma, G. Household preferences for energy-saving measures: A conjoint analysis. J. Econ. Psychol. 2003, 24, 49–64. [Google Scholar] [CrossRef]
- Wai, C.W.; Mohammed, A.H.; Alias, B. Energy conservation: A conceptual framework of energy awareness development process. Malaysian J. Real Estate 2009, 1, 58–67. [Google Scholar]
- Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D. Energy saving and energy efficiency concepts for policy making. Energy Policy 2009, 37, 4787–4796. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings? J. Econ. Psychol. 2009, 30, 711–720. [Google Scholar] [CrossRef]
- Niemeyer, S. Consumer voices: Adoption of residential energy-efficient practices. Int. J. Consum. Stud. 2010, 34, 140–145. [Google Scholar] [CrossRef]
- Pothitou, M.; Hanna, R.F.; Chalvatzis, K.J. Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study. Appl. Energy 2016, 184, 1217–1229. [Google Scholar] [CrossRef]
- Tanner, C.; Kast, S.W. Promoting Sustainable Consumption: Determinants of Green Purchases by Swiss Consumers. Psychol. Mark. 2003, 20, 883–902. [Google Scholar] [CrossRef]
- Baldini, M.; Trivella, A.; Wente, J.W. The impact of socioeconomic and behavioural factors for purchasing energy-efficient household appliances: A case study for Denmark. Energy Policy 2018, 120, 503–513. [Google Scholar] [CrossRef]
- Jain, S.K.; Kaur, G. Role of socio-demographics in segmenting and profiling green consumers: An exploratory study of consumers in India. J. Int. Consum. Mark. 2006, 18, 107–146. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, Y. The effects of energy efficiency and environmental labels on appliance choice in South Korea. Energy Effic. 2015, 8, 559–576. [Google Scholar] [CrossRef]
- Lin, J.; Lobo, A.; Leckie, C. The role of benefits and transparency in shaping consumers’ green perceived value, self-brand connection and brand loyalty. J. Retail. Consum. Serv. 2017, 35, 133–141. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Zhang, W.; Zhang, S. Extending the theory of planned behavior to explain the effects of cognitive factors across different kinds of green products. Sustainability 2019, 11, 4222. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, W.; Jin, Z.; Wang, Z. Influence of environmental concern and knowledge on households’ willingness to purchase energy-efficient appliances: A case study in Shanxi, China. Sustainability 2019, 11, 1073. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Wang, S. Antecedents of consumers’ intention to purchase energy-efficient appliances: An empirical study based on the technology acceptance model and theory of planned behavior. Sustainability 2019, 11, 2994. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-F. Extending the theory of planned behavior model to explain people’s energy savings and carbon reduction behavioral intentions to mitigate climate change in Taiwan–moral obligation matters. J. Clean. Prod. 2016, 112, 1746–1753. [Google Scholar] [CrossRef]
- Yuriev, A.; Dahmen, M.; Paillé, P.; Boiral, O.; Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 2020, 155, 104660. [Google Scholar] [CrossRef]
- Davies, J.; Foxall, G.R.; Pallister, J. Beyond the intention–behaviour mythology: An integrated model of recycling. Mark. Theory 2002, 2, 29–113. [Google Scholar] [CrossRef]
- Ertz, M.; Huang, R.; Jo, M.-S.; Karakas, F.; Sarigöllü, E. From single-use to multi-use: Study of consumers’ behavior toward consumption of reusable containers. J. Environ. Manag. 2017, 193, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. Constructing a TPB Questionnaire: Conceptual and Methodological Considerations; CiteSeer: Princeton, NJ, USA, 2002. [Google Scholar]
- Rhodes, R.E.; Courneya, K.S. Investigating multiple components of attitude, subjective norm, and perceived control: An examination of the theory of planned behaviour in the exercise domain. Br. J. Soc. Psychol. 2003, 42, 129–146. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Al Mamun, A.; Mohamad, M.R.; Bin Yaacob, M.R.; Mohiuddin, M. Intention and behavior towards green consumption among low-income households. J. Environ. Manag. 2018, 227, 73–86. [Google Scholar] [CrossRef]
- Sreen, N.; Purbey, S.; Sadarangani, P. Impact of culture, behavior and gender on green purchase intention. J. Retail. Consum. Serv. 2018, 41, 177–189. [Google Scholar] [CrossRef]
- Kaffashi, S.; Shamsudin, M.N. Transforming to a low carbon society; an extended theory of planned behaviour of Malaysian citizens. J. Clean. Prod. 2019, 235, 1255–1264. [Google Scholar] [CrossRef]
- Wiederhold, M.; Martinez, L.F. Ethical consumer behaviour in Germany: The attitude-behaviour gap in the green apparel industry. Int. J. Consum. Stud. 2018, 42, 419–429. [Google Scholar] [CrossRef]
- Gleim, M.; Lawson, S.J. Spanning the gap: An examination of the factors leading to the green gap. J. Consum. Mark. 2014, 31, 503–514. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Impact of values, involvement and perceptions on consumer attitudes and intentions towards sustainable consumption. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Van der Werff, E.; Steg, L.; Keizer, K. It is a moral issue: The relationship between environmental self-identity, obligation-based intrinsic motivation and pro-environmental behaviour. Glob. Environ. Chang. 2013, 23, 1258–1265. [Google Scholar] [CrossRef]
- Nigbur, D.; Lyons, E.; Uzzell, D. Attitudes, norms, identity and environmental behaviour: Using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme. Br. J. Soc. Psychol. 2010, 49, 259–284. [Google Scholar] [CrossRef]
- Gatersleben, B.; Murtagh, N.; Abrahamse, W. Values, identity and pro-environmental behaviour. Contemp. Soc. Sci. 2014, 9, 374–392. [Google Scholar] [CrossRef] [Green Version]
- Kashima, Y.; Paladino, A.; Margetts, E.A. Environmentalist identity and environmental striving. J. Environ. Psychol. 2014, 38, 64–75. [Google Scholar] [CrossRef]
- Qasim, H.; Yan, L.; Guo, R.; Saeed, A.; Ashraf, B.N. The defining role of environmental self-identity among consumption values and behavioral intention to consume organic food. Int. J. Environ. Res. Public Health 2019, 16, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, J.; Oliveira, T. Understanding energy-efficient heating appliance behavior change: The moderating impact of the green self-identity. Energy 2021, 225, 120169. [Google Scholar] [CrossRef]
- Mostafa, M.M. Gender differences in Egyptian consumers’ green purchase behaviour: The effects of environmental knowledge, concern and attitude. Int. J. Consum. Stud. 2007, 31, 220–229. [Google Scholar] [CrossRef]
- Polonsky, M.J.; Vocino, A.; Grau, S.L.; Garma, R.; Ferdous, A.S. The impact of general and carbon-related environmental knowledge on attitudes and behaviour of US consumers. J. Mark. Manag. 2012, 28, 238–263. [Google Scholar] [CrossRef]
- Laroche, M.; Tomiuk, M.; Bergeron, J.; Barbaro-Forleo, G. Cultural differences in environmental knowledge, attitudes, and behaviours of Canadian consumers. Can. J. Adm. Sci. Can. Sci. l’Adm. 2002, 19, 267–282. [Google Scholar] [CrossRef]
- Kollmuss, A.; Agyeman, J. Mind the gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Ham, S.; Yang, I.S.; Choi, J.G. The roles of attitude, subjective norm, and perceived behavioral control in the formation of consumers’ behavioral intentions to read menu labels in the restaurant industry. Int. J. Hosp. Manag. 2013, 35, 203–213. [Google Scholar] [CrossRef]
- Tarkiainen, A.; Sundqvist, S. Subjective norms, attitudes and intentions of Finnish consumers in buying organic food. Br. Food J. 2005, 107, 808–822. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Fishbein, M. Understing Attitudes and Predicting Social Behaviour; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Beck, L.; Ajzen, I. Predicting dishonest actions using the theory of planned behavior. J. Res. Personal. 1991, 25, 285–301. [Google Scholar] [CrossRef]
- Verma, V.K.; Chandra, B. An application of theory of planned behavior to predict young Indian consumers’ green hotel visit intention. J. Clean. Prod. 2018, 172, 1152–1162. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Determinants of consumers’ green purchase behavior in a developing nation: Applying and extending the theory of planned behavior. Ecol. Econ. 2017, 134, 114–122. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lobo, A.; Greenland, S. Energy efficient household appliances in emerging markets: The influence of consumers’ values and knowledge on their attitudes and purchase behaviour. Int. J. Consum. Stud. 2017, 41, 167–177. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Guo, D. Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work? Energy Policy 2017, 102, 430–439. [Google Scholar] [CrossRef]
- Ha, H.; Janda, S. Predicting consumer intentions to purchase energy-efficient products. J. Consum. Mark. 2012, 29, 461–469. [Google Scholar] [CrossRef]
- Hori, S.; Kondo, K.; Nogata, D.; Ben, H. The determinants of household energy-saving behavior: Survey and comparison in five major Asian cities. Energy Policy 2013, 52, 354–362. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Wang, B.; Zhang, B. Purchasing intentions of Chinese consumers on energy-efficient appliances: Is the energy efficiency label effective? J. Clean. Prod. 2019, 238, 117896. [Google Scholar] [CrossRef]
- Zainudin, N.; Siwar, C.; Choy, E.A.; Chamhuri, N. Evaluating the Role of Energy Efficiency Label on Consumers’ Purchasing Behaviour. APCBEE Procedia 2014, 10, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, Q.; Qi, Y. Factors influencing sustainable consumption behaviors: A survey of the rural residents in China. J. Clean. Prod. 2014, 63, 152–165. [Google Scholar] [CrossRef]
- Alam, S.S.; Hashim, N.H.N.; Rashid, M.; Omar, N.A.; Ahsan, N.; Ismail, M.D. Small-scale households renewable energy usage intention: Theoretical development and empirical settings. Renew. Energy 2014, 68, 255–263. [Google Scholar] [CrossRef]
- Gaspar, R.; Antunes, D. Energy efficiency and appliance purchases in Europe: Consumer profiles and choice determinants. Energy Policy 2011, 39, 7335–7346. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Yin, J.; Zhang, Y. Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China. Energy Policy 2011, 39, 3550–3557. [Google Scholar] [CrossRef]
- Bhutto, M.Y.; Liu, X.; Soomro, Y.A.; Ertz, M.; Baeshen, Y. Adoption of energy-efficient home appliances: Extending the theory of planned behavior. Sustainability 2021, 13, 250. [Google Scholar] [CrossRef]
- Zou, B.; Mishra, A.K. Appliance usage and choice of energy-efficient appliances: Evidence from rural Chinese households. Energy Policy 2020, 146, 111800. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, M.; Wang, W. Exploring the influence of severe haze pollution on residents’ intention to purchase energy-saving appliances. J. Clean. Prod. 2019, 212, 1536–1543. [Google Scholar] [CrossRef]
- Joshi, G.Y.; Sheorey, P.A.; Gandhi, A.V. Analyzing the barriers to purchase intentions of energy efficient appliances from consumer perspective. Benchmarking Int. J. 2019, 26, 1565–1580. [Google Scholar] [CrossRef]
- Kim, W.; Ko, S.; Oh, M.; Choi, I.; Shin, J. Is an incentive policy for energy efficient products effective for air purifiers? The case of South Korea. Energies 2019, 12, 1664. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, D.; Kant, R. Green purchasing behaviour: A conceptual framework and empirical investigation of Indian consumers. J. Retail. Consum. Serv. 2018, 41, 60–69. [Google Scholar] [CrossRef]
- Crosby, L.A.; Gill, J.D.; Taylor, J.R. Consumer/voter behavior in the passage of the Michigan container law. J. Mark. 1981, 45, 19–32. [Google Scholar] [CrossRef]
- Chen, M.F.; Tung, P.J. Developing an extended Theory of Planned Behavior model to predict consumers’ intention to visit green hotels. Int. J. Hosp. Manag. 2014, 36, 221–230. [Google Scholar] [CrossRef]
- Paul, J.; Modi, A.; Patel, J. Predicting green product consumption using theory of planned behavior and reasoned action. J. Retail. Consum. Serv. 2016, 29, 123–134. [Google Scholar] [CrossRef]
- Oh, K.; Abraham, L. Effect of knowledge on decision making in the context of organic cotton clothing. Int. J. Consum. Stud. 2016, 40, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.Y.K.; Lau, L.B.Y. Antecedents of green purchases: A survey in China. J. Consum. Mark. 2000, 17, 338–357. [Google Scholar] [CrossRef]
- Flamm, B. The impacts of environmental knowledge and attitudes on vehicle ownership and use. Transp. Res. Part D Transp. Environ. 2009, 14, 272–279. [Google Scholar] [CrossRef]
- Mostafa, M.M. Shades of green: A psychographic segmentation of the green consumer in Kuwait using self-organizing maps. Expert Syst. Appl. 2009, 36, 11030–11038. [Google Scholar] [CrossRef]
- Barber, N.; Taylor, C.; Strick, S. Wine consumers’ environmental knowledge and attitudes: Influence on willingness to purchase. Int. J. Wine Res. 2009, 1, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Latif, S.A.; Omar, M.S.; Bidin, Y.H.; Awang, Z. Role of environmental knowledge in creating pro-environmental residents. Procedia-Soc. Behav. Sci. 2013, 105, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Molina, M.A.; Fernández-Sáinz, A.; Izagirre-Olaizola, J. Environmental knowledge and other variables affecting pro-environmental behaviour: Comparison of university students from emerging and advanced countries. J. Clean. Prod. 2013, 61, 130–138. [Google Scholar] [CrossRef]
- Atkinson, L.; Rosenthal, S. Signaling the green sell: The influence of eco-label source, argument specificity, and product involvement on consumer trust. J. Advert. 2014, 43, 33–45. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Alfaro, J.A.; Mejía-Villa, A.; Ormazabal, M. ECO-labels as a multidimensional research topic: Trends and opportunities. J. Clean. Prod. 2016, 135, 806–818. [Google Scholar] [CrossRef]
- Shen, J.; Saijo, T. Does an energy efficiency label alter consumers’ purchasing decisions? A latent class approach based on a stated choice experiment in Shanghai. J. Environ. Manag. 2009, 90, 3561–3573. [Google Scholar] [CrossRef]
- Stadelmann, M.; Schubert, R. How do different designs of energy labels influence purchases of household appliances? A field study in Switzerland. Ecol. Econ. 2018, 144, 112–123. [Google Scholar] [CrossRef]
- Cho, E.; Gupta, S.; Kim, Y. Style consumption: Its drivers and role in sustainable apparel consumption. Int. J. Consum. Stud. 2015, 39, 661–669. [Google Scholar] [CrossRef]
- Simon, F.L. Marketing green products in the triad. Columbia J. World Bus. 1992, 27, 268–285. [Google Scholar]
- Stets, J.E.; Burke, P.J. Identity theory and social identity theory. Soc. Psychol. Q. 2000, 63, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Conner, M.; Armitage, C.J. Extending the theory of planned behavior: A review and avenues for further research. J. Appl. Soc. Psychol. 1998, 28, 1429–1464. [Google Scholar] [CrossRef]
- Van der Werff, E.; Steg, L.; Keizer, K. The value of environmental self-identity: The relationship between biospheric values, environmental self-identity and environmental preferences, intentions and behaviour. J. Environ. Psychol. 2013, 34, 55–63. [Google Scholar] [CrossRef]
- Stets, J.E.; Biga, C.F. Bringing identity theory into environmental sociology. Sociol. Theory 2003, 21, 398–423. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Kerr, G.N.; Moore, K. Attitudes and intentions towards purchasing GM food. J. Econ. Psychol. 2002, 23, 557–572. [Google Scholar] [CrossRef]
- Sparks, P.; Shepherd, R. Self-Identity and the Theory of Planned Behavior: Assesing the Role of Identification with “Green Consumerism”. Soc. Psychol. Q. 1992, 55, 388–399. [Google Scholar] [CrossRef]
- Činjarević, M.; Agić, E.; Peštek, A. When consumers are in doubt, you better watch out! the moderating role of consumer skepticism and subjective knowledge in the context of organic food consumption. Zagreb Int. Rev. Econ. Bus. 2018, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Raju, P.S.; Lonial, S.C.; Mangold, W.G. Differential effects of subjective knowledge, objective knowledge, and usage experience on decision making: An exploratory investigation. J. Consum. Psychol. 1995, 4, 153–180. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Vidaver-Cohen, D. Moral climate in business firms: A conceptual framework for analysis and change. J. Bus. Ethics 1998, 17, 1211–1226. [Google Scholar] [CrossRef]
- Barclay, M.J.; Smith, C.W.; Watts, R.L. The determinants of corporate leverage and dividend policies. J. Appl. Corp. Financ. 1995, 7, 4–19. [Google Scholar] [CrossRef]
- Ali, M.R.; Shafiq, M.; Andejany, M. Determinants of consumers’ intentions towards the purchase of energy efficient appliances in Pakistan: An extended model of the theory of planned behavior. Sustainability 2021, 13, 565. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Akter, S.; D’Ambra, J.; Ray, P. Trustworthiness in mHealth information services: An assessment of a hierarchical model with mediating and moderating effects using partial least squares (PLS). J. Am. Soc. Inf. Sci. Technol. 2011, 62, 100–116. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Kline, R.B. Convergence of Structural Equation Modeling and Multilevel Modeling; Sage Publishing: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Kleinbaum, D.G.; Kupper, L.L.; Muller, K.E. Applied Regression Analysys and Other Multivariable Methods. In Applied Regression Analysys and Other Multivariable Methods; Duxbury Press: Pacific Grove, CA, USA, 1988; p. 718. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 20–26. [Google Scholar]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992; ISBN 0962262846. [Google Scholar]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976; ISBN 0226316521. [Google Scholar]
- Holbert, R.L.; Stephenson, M.T. Structural Equation Modeling in the Communication Sciences, 1995–2000. Hum. Commun. Res. 2002, 28, 1995–2000. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Sörbom, D. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language; Scientific Software International: Skokie, IL, USA, 1993. [Google Scholar]
- McDonald, R.P.; Ho, M.-H.R. Principles and practice in reporting structural equation analyses. Psychol. Methods 2002, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage Publications: Thousand Oaks, CA, USA, 1993; pp. 136–162. [Google Scholar]
- Si, H.; Shi, J.; Tang, D.; Wu, G.; Lan, J. Understanding intention and behavior toward sustainable usage of bike sharing by extending the theory of planned behavior. Resour. Conserv. Recycl. 2020, 152, 104513. [Google Scholar] [CrossRef]
- Chen, A.; Peng, N. Recommending green hotels to travel agencies’ customers. Ann. Tour. Res. 2014, 48, 284–289. [Google Scholar] [CrossRef]
- Liu, P.; Teng, M.; Han, C. How does environmental knowledge translate into pro-environmental behaviors?: The mediating role of environmental attitudes and behavioral intentions. Sci. Total Environ. 2020, 728, 138126. [Google Scholar] [CrossRef]
- Irianto, H. Consumers’ attitude and intention towards organic food purchase: An extension of theory of planned behavior in gender perspective. Int. J. Manag. Econ. Soc. Sci. 2015, 4, 17–31. [Google Scholar]
- Buabeng-Andoh, C. Predicting students’ intention to adopt mobile learning: A combination of theory of reasoned action and technology acceptance model. J. Res. Innov. Teach. Learn. 2018, 15, 124–143. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.-W.; Siddik, A.B.; Masukujjaman, M.; Alam, S.S.; Akter, A. Perceived Environmental Responsibilities and Green Buying Behavior: The Mediating Effect of Attitude. Sustainability 2021, 13, 35. [Google Scholar] [CrossRef]
Aspects | Classification | F | % | Aspects | Classification | F | % |
---|---|---|---|---|---|---|---|
Gender | Male | 194 | 53.2 | Income ($1 equals Tk. 85) | Up to $235 | 16 | 4.5 |
Female | 171 | 46.8 | $235–$470 | 73 | 20.0 | ||
Age | <20 | 38 | 10.4 | $470-$705 | 196 | 53.7 | |
20–30 | 55 | 15.0 | $705–$940 | 57 | 15.5 | ||
30–40 | 163 | 44.6 | >940 | 23 | 6.3 | ||
40–50 | 92 | 25.3 | Profession | Student | 41 | 11.1 | |
>50 | 17 | 4.7 | |||||
Educational level | No formal education | 39 | 10.6 | Entrepreneurs | 37 | 10.2 | |
Higher Secondary or below | 114 | 31.3 | Govt. Job holders | 82 | 22.6 | ||
Graduate | 174 | 47.7 | Private Jobs | 162 | 44.4 | ||
Postgraduate and above | 38 | 10.4 | Self-employed | 43 | 11.7 |
Constructs | Item | Item Loading | Cronbach Alpha (α) | Composite Reliability | Average Variance Explained |
---|---|---|---|---|---|
Eco-Labeling | LB1 | 0.747 | 0.867 | 0.877 | 0.707 |
LB2 | 0.777 | ||||
LB3 | 0.979 | ||||
Buying Intention | BI1 | 0.854 | 0.868 | 0.838 | 0.635 |
BI2 | 0.835 | ||||
BI3 | 0.691 | ||||
Perceived Behavioral Control | PBC1 | 0.893 | 0.907 | 0.908 | 0.767 |
PBC2 | 0.845 | ||||
PBC3 | 0.889 | ||||
Environmental Concern | EC1 | 0.792 | 0.893 | 0.897 | 0.745 |
EC2 | 0.905 | ||||
EC3 | 0.888 | ||||
Environmental Knowledge | EK1 | 0.719 | 0.796 | 0.897 | 0.745 |
EK2 | 0.810 | ||||
EK3 | 0.743 | ||||
Subjective Norms | SN1 | 0.845 | 0.864 | 0.864 | 0.680 |
SN2 | 0.850 | ||||
SN3 | 0.777 | ||||
Attitude | AT1 | 0.786 | 0.907 | 0.861 | 0.674 |
AT2 | 0.839 | ||||
AT3 | 0.836 | ||||
Green Self–Identity | GSI1: | 0.833 | 0.831 | 0.876 | 0.702 |
GSI2: | 0.852 | ||||
GSI3: | 0.828 |
LB | EK | EC | SN | PBC | AT | GSI | BI | |
---|---|---|---|---|---|---|---|---|
Labeling (LB) | 0.841 | |||||||
Environmental Knowledge (EK) | 0.584 ** | 0.863 | ||||||
Environmental Concern (EC) | 0.659 ** | 0.614 ** | 0.863 | |||||
Subjective Norms (SN) | 0.638 ** | 0.620 ** | 0.690 ** | 0.825 | ||||
Perceived Behavioral Control (PBC) | 0.134 * | 0.189 ** | 0.268 ** | 0.226 ** | 0.876 | |||
Attitude (AT) | 0.676 ** | 0.675 ** | 0.715 ** | 0.729 ** | 0.206 ** | 0.821 | ||
Green Self–identity (GSI) | 0.599 ** | 0.619 ** | 0.720 ** | 0.642 ** | 0.164 ** | 0.752 ** | 0.838 | |
Buying Intention (BI) | 0.670 ** | 0.692 ** | 0.718 ** | 0.675 ** | 0.418 ** | 0.743 ** | 0.671 ** | 0.797 |
LB | EK | EC | SN | PBC | AT | GSI | BI | |
---|---|---|---|---|---|---|---|---|
LB | ||||||||
EK | 0.703 | |||||||
EC | 0.749 | 0.728 | ||||||
SN | 0.736 | 0.749 | 0.786 | |||||
PBC | 0.152 | 0.226 | 0.300 | 0.258 | ||||
AT | 0.762 | 0.794 | 0.834 | 0.824 | 0.230 | |||
GSI | 0.720 | 0.782 | 0.823 | 0.777 | 0.196 | 0.817 | ||
BI | 0.768 | 0.830 | 0.828 | 0.775 | 0.472 | 0.831 | 0.799 |
Mean | Std. Deviation | Skewness | Kurtosis | VIF | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
AT | BI | PBC | SN | Values | Strength | |||||
LB | 3.305 | 0.7534 | −0.259 | −0.076 | 2.087 | |||||
EK | 3.080 | 0.752 | −0.329 | −0.438 | 1.905 | 1.967 | ||||
EC | 3.280 | 0.904 | −0.243 | −0.064 | 2.391 | 1.00 | 1.00 | |||
SN | 3.426 | 0.779 | −0.456 | 0.323 | 2.320 | 2.303 | ||||
PBC | 2.587 | 1.089 | 0.620 | −0.652 | 1.060 | 0.09 | Low | |||
AT | 3.342 | 0.812 | −0.485 | 0.309 | 2.582 | 0.70 | High | |||
GSI | 3.460 | 0.744 | −0.494 | 0.781 | 0.61 | High | ||||
BI | 3.298 | 0.828 | −0.300 | −0.375 | 0.77 | High |
Hypotheses | STD Beta | STD Error | t-Values | p-Values | Significance (p < 0.05) |
---|---|---|---|---|---|
H1: EC→ SN | 0.783 | 0.055 | 13.069 *** | 0.000 | Supported |
H2: EC→ AT | 0.489 | 0.065 | 6.029 *** | 0.000 | Supported |
H3: EC→ PBC | 0.304 | 0.079 | 5.142 *** | 0.000 | Supported |
H4: EK→ AT | 0.284 | 0.045 | 6.043 *** | 0.000 | Supported |
H5: EK→ BI | 0.295 | 0.049 | 5.810 *** | 0.000 | Supported |
H6: SN→ AT | 0.313 | 0.071 | 3.924 *** | 0.000 | Supported |
H7: SN→BI | 0.172 | 0.060 | 2.533 ** | 0.011 | Supported |
H8: LB→AT | 0.206 | 0.031 | 5.057 *** | 0.000 | Supported |
H9: AT→ BI | 0.497 | 0.075 | 6.653 *** | 0.000 | Supported |
H10: PBC→ BI | 0.324 | 0.026 | 7.636 *** | 0.000 | Supported |
H11: GSI*AT → BI | 0.289 | 0.039 | 6.324 *** | 0.000 | Supported |
H12: EK*AT → BI | 0.018 | 0.172 | 0.606 | 0.237 | Not Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Siddik, A.B.; Masukujjaman, M.; Wei, X. Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity. Appl. Sci. 2021, 11, 9878. https://doi.org/10.3390/app11219878
Li Y, Siddik AB, Masukujjaman M, Wei X. Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity. Applied Sciences. 2021; 11(21):9878. https://doi.org/10.3390/app11219878
Chicago/Turabian StyleLi, Ya, Abu Bakkar Siddik, Mohammad Masukujjaman, and Xiujian Wei. 2021. "Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity" Applied Sciences 11, no. 21: 9878. https://doi.org/10.3390/app11219878
APA StyleLi, Y., Siddik, A. B., Masukujjaman, M., & Wei, X. (2021). Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity. Applied Sciences, 11(21), 9878. https://doi.org/10.3390/app11219878