A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations
Abstract
:1. Introduction
- We designed an information interaction unit to combine a recommendation system and knowledge graph embedding tasks. KANR can learn the semantic information in the knowledge graph in a unified vector space.
- We proposed an attention aggregation network which is used to collect users’ interaction history and mine users’ preferences to improve personalized recommendations.
- We conducted a series of experiments on three open-source datasets to verify the effectiveness of KANR. The results showed that KANR more effectively learned user preferences and performed well in click-through rate prediction and Top-K recommendation tasks.
2. Related Work
2.1. Recommendation Systems
2.2. Knowledge Graph Embedding
3. Methods
3.1. Formulation
3.2. Our Model
3.2.1. Information Interaction Unit
3.2.2. Attention Aggregation Network
3.2.3. Prediction
3.3. Learning
4. Experiment and Results
4.1. Data and Experimental Environment
4.2. Baseline
4.3. Results
4.3.1. Metrics
4.3.2. The Performance in CTR Prediction
4.3.3. The Performance in Top-K Recommendation
4.3.4. The Performance in the Cold Start Environment
4.3.5. The Performance under Different Embedding Dimensions
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rendle, S.; Krichene, W.; Zhang, L.; Anderson, J. Neural collaborative filtering vs. matrix factorization revisited. In Proceedings of the Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, 22–26 September 2020; pp. 240–248. [Google Scholar]
- Song, W.; Xiao, Z.; Wang, Y.; Charlin, L.; Zhang, M.; Tang, J. Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne VIC, Australia, 11–15 February 2019; pp. 555–563. [Google Scholar]
- Wang, H.; Zhang, F.; Hou, M.; Xie, X.; Guo, M.; Liu, Q. Shine: Signed heterogeneous information network embedding for sentiment link prediction. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018; pp. 592–600. [Google Scholar]
- Dong, B.; Zhu, Y.; Li, L.; Wu, X. Hybrid collaborative recommendation of co-embedded item attributes and graph features. Neurocomputing 2021, 442, 307–316. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018. [Google Scholar]
- Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; Hellmann, S. DBpedia—A crystallization point for the Web of Data. J. Web Semant. 2009, 7, 154–165. [Google Scholar] [CrossRef]
- Pelikánová, Z. Google Knowledge Graph. 2014. Available online: https://dspace.muni.cz/handle/ics_muni_cz/1024 (accessed on 27 October 2021). (In Czech).
- Das, D.; Sahoo, L.; Datta, S. A survey on recommendation system. Int. J. Comput. Appl. 2017, 160. Available online: https://www.ijcaonline.org/archives/volume160/number7/das-2017-ijca-913081.pdf (accessed on 27 October 2021). [CrossRef]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-task feature learning for knowledge graph enhanced recommendation. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13 May 2019; pp. 2000–2010. [Google Scholar]
- Zhang, Y.; Yang, Q. A survey on multi-task learning. arXiv 2017, arXiv:1707.08114. [Google Scholar]
- Wang, H.; Zhang, F.; Xie, X.; Guo, M. DKN: Deep Knowledge-Aware Network for News Recommendation. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Lyon, France, 10 April 2018; pp. 1835–1844. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zhang, F.; Yuan, N.J.; Lian, D.; Xie, X.; Ma, W.Y. Collaborative knowledge base embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 353–362. [Google Scholar]
- Wang, X.; Wang, D.; Xu, C.; He, X.; Cao, Y.; Chua, T.S. Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5329–5336. [Google Scholar] [CrossRef] [Green Version]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, D.; Jiang, G.; Gu, X.; Sun, K.; Mao, Y.; Ren, X. Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning. arXiv 2020, arXiv:2005.00571. [Google Scholar]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge graph convolutional networks for recommender systems. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13 May 2019; pp. 3307–3313. [Google Scholar]
- Zhang, D.; Liu, L.; Wei, Q.; Yang, Y.; Yang, P.; Liu, Q. Neighborhood Aggregation Collaborative Filtering Based on Knowledge Graph. Appl. Sci. 2020, 10, 3818. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 19 February 2015; Volume 29. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 1, pp. 687–696. Available online: https://aclanthology.org/P15-1067.pdf (accessed on 27 October 2021).
- Liu, H.; Wu, Y.; Yang, Y. Analogical Inference for MultiRelational Embeddings. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2168–2178. Available online: http://proceedings.mlr.press/v70/liu17d/liu17d.pdf (accessed on 27 October 2021).
- Nickel, M.; Rosasco, L.; Poggio, T. Holographic Embeddings of Knowledge Graphs. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7 December 2016; pp. 1955–1961. [Google Scholar]
- Huang, P.S.; He, X.; Gao, J.; Deng, L.; Acero, A.; Heck, L. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October 2013; pp. 2333–2338. [Google Scholar]
- Yang, B.; Yih, W.-T.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Wang, R.; Fu, B.; Fu, G.; Wang, M. Deep & Cross Network for Ad Click Predictions. In Proceedings of the ADKDD’17, Halifax, NS, Canada, 14 August 2017. [Google Scholar]
- Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016. [Google Scholar]
- Steffen, R. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, R.; Erfani, S.; Gan, J. Neural Graph Matching based Collaborative Filtering. arXiv 2021, arXiv:2105.04067. [Google Scholar]
Dataset | #Users | #Items | #Triples | #Interaction Types | D | N | Batch Size |
---|---|---|---|---|---|---|---|
Movie-1M | 6036 | 2347 | 20,195 | 5 | 64 | 4 | 512 |
Last.FM | 1872 | 3846 | 15,518 | 12 | 16 | 5 | 128 |
Book-Crossings | 17,860 | 14,910 | 19,793 | 10 | 16 | 4 | 128 |
Method | MovieLens-1M | Last.FM | Book-Crossing | |||
---|---|---|---|---|---|---|
AUC | ACC | AUC | ACC | AUC | ACC | |
Wide&Deep | 0.898 (−3.0%) | 0.820 (−3.6%) | 0.756 (−7.4%) | 0.688 (−8.5%) | 0.712 (−4.3%) | 0.624 (−11.1%) |
CKE | 0.801 (−13.7%) | 0.742 (−12.8%) | 0.744 (−8.9%) | 0.673 (−10.5%) | 0.671 (−9.8%) | 0.673 (−4.2%) |
LibFM | 0.892 (−3.9%) | 0.812 (−4.5%) | 0.777 (−4.8%) | 0.709 (−5.7%) | 0.685 (−7.9%) | 0.640 (−8.6%) |
Ripple | 0.920 (−0.9%) | 0.842 (−1.1%) | 0.780 (−4.5%) | 0.702 (−6.6%) | 0.729 (−2.0%) | 0.662 (−5.6%) |
MKR | 0.924 (−0.5%) | 0.848 (−0.3%) | 0.796 (−2.5%) | 0.752 (0%) | 0.738 (−0.8%) | 0.688 (−1.9%) |
KGCN | 0.917 (−1.3%) | 0.843 (−0.9%) | 0.796 (−2.5%) | 0.728 (−3.2%) | 0.731 (−1.7%) | 0.678 (−3.4%) |
GMCF | 0.918 (−1.1%) | 0.845 (−0.7%) | 0.785 (−3.9%) | 0.71 (−2.3%) | 0.789 (+6.0%) | 0.712 (+1.4%) |
KANR | 0.929 | 0.851 | 0.817 | 0.752 | 0.744 | 0.702 |
KANR-K | 0.903 (−2.7%) | 0.826(−2.9%) | 0.782 (−4.3%) | 0.742(−3.5%) | 0.718 (−3.5%) | 0.668 (−4.8%) |
KANR-A | 0.921 (−0.8%) | 0.839(−1.4%) | 0.808 (−1.1%) | 0.746 (−0.8%) | 0.726 (−2.4%) | 0.679 (−3.2%) |
d | 8 | 16 | 32 | 64 | 128 |
---|---|---|---|---|---|
Movielens-1M | 0.887 | 0.902 | 0.915 | 0.929 | 0.923 |
Last.FM | 0.808 | 0.817 | 0.812 | 0.796 | 0.773 |
Book-Crossing | 0.731 | 0.744 | 0.729 | 0.722 | 0.718 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Yang, X.; Liu, L.; Liu, Q. A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations. Appl. Sci. 2021, 11, 10432. https://doi.org/10.3390/app112110432
Zhang D, Yang X, Liu L, Liu Q. A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations. Applied Sciences. 2021; 11(21):10432. https://doi.org/10.3390/app112110432
Chicago/Turabian StyleZhang, Dehai, Xiaobo Yang, Linan Liu, and Qing Liu. 2021. "A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations" Applied Sciences 11, no. 21: 10432. https://doi.org/10.3390/app112110432
APA StyleZhang, D., Yang, X., Liu, L., & Liu, Q. (2021). A Knowledge Graph-Enhanced Attention Aggregation Network for Making Recommendations. Applied Sciences, 11(21), 10432. https://doi.org/10.3390/app112110432