A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis
Abstract
:Featured Application
Abstract
1. Introduction
2. Experiments
2.1. Model Sample
2.2. Experimental System
2.3. Experimental Scheme
3. Results and Discussion
3.1. Experimental Results
3.2. Analysis of Icing Characteristics
4. Contrast Analyses between Different Rotation Modes
5. Conclusions
- The amount of icing in unit time and the stagnation point thickness both increase with the rotational speed. The rotational speed has a significant effect on the icing limit of the cylinder. The icing limit reduces to 50% as the rotational speed increases.
- The factor of icing time has significant effects on the icing area and the stagnation point thickness but little effect on the icing limit.
- With an increase in the diameter of the cylinder, the amount of icing on the cylinder surface clearly increases, but the dimensionless icing area decreases. The diameter of the cylinder has little effect on the stagnation point thickness and the icing limit, but it has a significant effect on the dimensionless stagnation point thickness. When the diameter increases, the dimensionless stagnation point thickness decreases. This indicates that the icing event has a minor effect on the profile of a model with a small curvature.
- When the rotational speed of the cylinder is constant, the inflow angle of the cylinder rotating around the vertical axis changes all the time in one trajectory circle, in contrast to the case for the rotation mode around the horizontal axis. The range of the angle decreases with an increase in the rotational speed. This is the key factor in the shrinking of the surface area covered by the ice layer with an increase in the rotational speed.
6. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamraoui, F.; Fortin, G.; Benoit, R.; Perron, J.; Masson, C. Atmospheric icing impact on wind turbine production. Cold Reg. Sci. Technol. 2014, 100, 36–49. [Google Scholar] [CrossRef]
- Jing, Z.; Bingliang, S. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades. Renew. Energy 2017, 113, 706–712. [Google Scholar]
- Wang, Z.; Zhu, C.; Zhao, N. Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber. Appl. Sci. 2020, 10, 5884. [Google Scholar] [CrossRef]
- Alessandro, Z.; Michele, D.G.; Helmut, K. Wind Energy Harnessing of the NREL 5 MW Reference Wind Turbine in Icing Conditions under Different Operational Strategies. Renew. Energy 2018, 115, 760–772. [Google Scholar]
- Dalili, N.; Edrisy, A.; Carriveau, R. A review of surface engineering issues critical to wind turbine performance. Renew. Sust. Energy Rev. 2009, 13, 428–438. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Y.; Hu, H. An Experimental Investigation of Dynamic Ice Accretion Process on a Wind Turbine Blade Model Considering Various Icing Conditions. Int. J. Heat Mass Transf. 2019, 133, 930–939. [Google Scholar] [CrossRef]
- Ibrahim, G.M.; Pope, K.; Muzychka, Y.S. Effects of blade design on ice accretion for horizontal axis wind turbines. J. Wind Eng. Ind. Aerodyn. 2017, 173, 39–52. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, X.; Hu, C.; Chen, J.; Du, Z. Wind turbines ice distribution and load response under icing conditions. Renew. Energy 2017, 113, 608–619. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Jiang, Y.; Yi, X.; Xu, Z.; Guo, W. Temperature effect on icing distribution near blade tip of large-scale horizontal-axis wind turbine by numerical simulation. Adv. Mech. Eng. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Yi, X.; Wang, K.C.; Ma, H.L.; Zhu, G. Computation of icing and its effect of horizontal axis wind turbine. Acta Energ. Sol. Sin. 2014, 35, 1052–1058. (In Chinese) [Google Scholar]
- Yi, X.; Wang, K.C.; Ma, H.L.; Zhu, G. 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing. Acta Aerodyn. Sin. 2013, 31, 745–751. (In Chinese) [Google Scholar]
- Lu, T.; Sang, W.; Liu, X.; Xi, C. Numerical simulation of icing accretion and influence on three-dimensional wing configuration. J. Aerosp. Power 2014, 29, 1339–1345. (In Chinese) [Google Scholar]
- Jin, J.Y.; Virk, M.S. Study of Ice Accretion and Icing Effects on Aerodynamic Characteristics of DU96 Wind Turbine Blade Profile. Cold Reg. Sci. Technol. 2019, 160, 119–127. [Google Scholar] [CrossRef]
- Yirtici, O.; Ozgen, S.; Tuncer, I.H. Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy 2019, 22, 945–958. [Google Scholar] [CrossRef]
- Rausa, A.; Morelli, M.; Guardone, A. A novel method for robust and efficient prediction of ice shedding from rotorcraft blades—ScienceDirect. J. Comput. Appl. Math. 2021, 391, 113452. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S.; Hu, Q.; Jiang, X. Study of Ice Accretion on Horizontal Axis Wind Turbine Blade Using 2D and 3D Numerical Approach. IEEE Access 2020, 8, 166236–166245. [Google Scholar] [CrossRef]
- Jin, J.Y.; Virk, M.S. Experimental study of ice accretion on S826 & S832 wind turbine blade profiles. Cold Reg. Sci. Technol. 2020, 169, 102913. [Google Scholar]
- Han, Y.; Palacios, J.; Schmitz, S. Scaled ice accretion experiments on rotating wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2012, 109, 55–67. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Tagawa, K.; Feng, F. A Wind Tunnel Experimental Study on Icing Distribution of Rotating Blade. J. Eng. Thermophys. 2017, 38, 1229–1236. (In Chinese) [Google Scholar]
- Guo, W.; Shen, H.; Li, Y.; Feng, F.; Tagawa, K. Wind tunnel tests of the rime icing characteristics of a straight-bladed vertical axis wind turbine. Renew. Energy 2021, 179, 116–132. [Google Scholar] [CrossRef]
- Gao, L.; Tao, T.; Liu, Y.; Hu, H. A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renew. Energy 2020, 167, 917–928. [Google Scholar] [CrossRef]
- Gao, L.; Hu, H. Wind turbine icing characteristics and icing-induced power losses to utility-scale wind turbines. Engineering 2021, 118, 1–3. [Google Scholar]
- Lehtomäki, V.; Krenn, A. IEA Wind TCP Task 19: Available Technologies for Wind Energy in Cold Climate. 2018, pp. 34–35. Available online: https://www.seai.ie/publications/IEA_Wind_Annual_Report_2015.pdf (accessed on 27 September 2021).
- Launiainen, J.; Lyyra, M. Icing on a Non-Rotating Cylinder under Conditions of High Liquid Water Content in the Air: I. Form and Size of Ice Deposits. J. Glaciol. 1986, 32, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Launiainen, J.; Lyyra, M. Icing on a Non-Rotating Cylinder under Conditions of High Liquid Water Content in the Air: II. Heat Transfer and Rate of Ice Growth. J. Glaciol. 1986, 32, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Lozowski, E.P.; Stallabrass, J.R.; Hearty, P. The Icing of an Unheated, Nonrotating Cylinder. Part I: A Simulation Model. J. Appl. Meteorol. 1983, 22, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Lozowski, E.P.; Stallabrass, J.R.; Hearty, P.F. The Icing of an Unheated, Nonrotating Cylinder. Part II. Icing Wind Tunnel Experiments. J. Appl. Meteorol. 2010, 22, 2063–2074. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, S.; Yi, X.; Zhou, Z.; Guo, L. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft. Acta Aeronaut. Astronaut. Sin. 2017, 38, 1–11. (In Chinese) [Google Scholar]
- Manatbayev, R.; Baizhuma, Z.; Bolegenova, S.; Georgiev, A. Numerical simulations on static Vertical Axis Wind Turbine blade icing. Renew. Energy 2021, 170, 997–1007. [Google Scholar] [CrossRef]
- Baizhuma, Z.; Kim, T.; Son, C. Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions. J. Wind Eng. Ind. Aerodyn. 2021, 216, 104708. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Guo, W.; Sun, C.; Jiang, Y. Wind Tunnel Test of the Icing Characteristics of Airfoil Rotating around a Vertical Axis. Int. J. Rotating Mach. 2020, 2020, 8841076. [Google Scholar] [CrossRef]
TSR | Rotational Speed (n/min) | Experimental Temperature (°C) | LWC (g/m3) | MVD (μm) | Wind Speed (m/s) | Time Interval of Icing Shape Collection (Δt) | Total Icing Time (t) |
---|---|---|---|---|---|---|---|
0.2 | 25.4 | −16 ℃ | 0.58 | 50 | 4 | 5 min | 30 min |
0.6 | 76.39 | 5 min | 30 min | ||||
1.0 | 127.4 | 5 min | 30 min | ||||
1.5 | 191.1 | 90 s | 270 s | ||||
2.5 | 318.5 | 50 s | 150 s | ||||
3.5 | 445.9 | 30 s | 90 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhang, Y.; Li, Y.; Tagawa, K.; Zhao, B. A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Appl. Sci. 2021, 11, 10383. https://doi.org/10.3390/app112110383
Guo W, Zhang Y, Li Y, Tagawa K, Zhao B. A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Applied Sciences. 2021; 11(21):10383. https://doi.org/10.3390/app112110383
Chicago/Turabian StyleGuo, Wenfeng, Yingwei Zhang, Yan Li, Kotaro Tagawa, and Bin Zhao. 2021. "A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis" Applied Sciences 11, no. 21: 10383. https://doi.org/10.3390/app112110383
APA StyleGuo, W., Zhang, Y., Li, Y., Tagawa, K., & Zhao, B. (2021). A Wind Tunnel Experimental Study on the Icing Characteristics of a Cylinder Rotating around a Vertical Axis. Applied Sciences, 11(21), 10383. https://doi.org/10.3390/app112110383