Towards a New, Pre-Clinical, Subject-Independent Test Model for Kinematic Analysis after Total Knee Arthroplasty—Influence of the Proximo-Distal Patella Position and Patellar Tendon Stiffness
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Concept and Assumptions
2.2. FE Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rönn, K.; Reischl, N.; Gautier, E.; Jacobi, M. Current surgical treatment of knee osteoarthritis. Arthritis 2011, 2011, 454873. [Google Scholar] [CrossRef] [Green Version]
- Robertsson, O.; Bizjajeva, S.; Fenstad, A.M.; Furnes, O.; Lidgren, L.; Mehnert, F.; Odgaard, A.; Pedersen, A.B.; Havelin, L.I. Knee arthroplasty in Denmark, Norway and Sweden. A pilot study from the Nordic Arthroplasty Register Association. Acta Orthop. 2010, 81, 82–89. [Google Scholar] [CrossRef]
- Bae, D.K.; Song, S.J.; Heo, D.B.; Lee, S.H.; Song, W.J. Long-term survival rate of implants and modes of failure after revision total knee arthroplasty by a single surgeon. J. Arthroplast. 2013, 28, 1130–1134. [Google Scholar] [CrossRef]
- Argenson, J.-N.; Boisgard, S.; Parratte, S.; Descamps, S.; Bercovy, M.; Bonnevialle, P.; Briard, J.-L.; Brilhault, J.; Chouteau, J.; Nizard, R.; et al. Survival analysis of total knee arthroplasty at a minimum 10 years’ follow-up: A multicenter French nationwide study including 846 cases. Orthop. Traumatol. Surg. Res. 2013, 99, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Bae, D.K.; Song, S.J.; Park, M.J.; Eoh, J.H.; Song, J.H.; Park, C.H. Twenty-year survival analysis in total knee arthroplasty by a single surgeon. J. Arthroplast. 2012, 27, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, E.; Eskelinen, A.; Paavolainen, P.; Pulkkinen, P.; Remes, V. Comparison of survival and cost-effectiveness between unicondylar arthroplasty and total knee arthroplasty in patients with primary osteoarthritis: A follow-up study of 50,493 knee replacements from the Finnish Arthroplasty Register. Acta Orthop. 2008, 79, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labek, G.; Thaler, M.; Janda, W.; Agreiter, M.; Stöckl, B. Revision rates after total joint replacement: Cumulative results from worldwide joint register datasets. J. Bone Jt. Surg. Br. 2011, 93, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadoghi, P.; Liebensteiner, M.; Agreiter, M.; Leithner, A.; Böhler, N.; Labek, G. Revision surgery after total joint arthroplasty: A complication-based analysis using worldwide arthroplasty registers. J. Arthroplast. 2013, 28, 1329–1332. [Google Scholar] [CrossRef]
- Robertsson, O.; Dunbar, M.; Pehrsson, T.; Knutson, K.; Lidgren, L. Patient satisfaction after knee arthroplasty: A report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop. Scand. 2000, 71, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, N.B.; McAuliffe, M.; Orschulok, T.; Lorimer, M.F.; de Steiger, R. Major Aseptic Revision Following Total Knee Replacement: A Study of 478,081 Total Knee Replacements from the Australian Orthopaedic Association National Joint Replacement Registry. J. Bone Jt. Surg. Am. 2019, 101, 302–310. [Google Scholar] [CrossRef]
- ASTM F2723-13a. Standard Test Method for Evaluating Mobile Bearing Knee Tibial Baseplate/Bearing Resistance to Dynamic Disassociation; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM F2722-15. Standard Practice for Evaluating Mobile Bearing Knee Tibial Baseplate Rotational Stops; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM F2777-16. Standard Test Method for Evaluating Knee Bearing (Tibial Insert) Endurance and Deformation Under High Flexion; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM F2083-12. Standard Specification for Knee Replacement Prosthesis; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ISO 14243-1:2009-11. Implants for Surgery—Wear of Total Knee Prostheses—Part 1: Loading and Displacement Parameters for Wear-Testing Machines with Load Control and Corresponding Environmental Conditions for Test; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ISO 14243-3_2014-11. Implants for Surgery—Wear of Total Knee Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines with Displacement Control and Corresponding Environmental Conditions for Test; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- ASTM F3141-17a. Standard Guide for Total Knee Replacement Loading Profiles; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Schwiesau, J.; Schilling, C.; Kaddick, C.; Utzschneider, S.; Jansson, V.; Fritz, B.; Blömer, W.; Grupp, T.M. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med. Eng. Phys. 2013, 35, 591–600. [Google Scholar] [CrossRef]
- ISO 14243-5:2019-05. Implants for Surgery—Wear of Total Knee Prostheses—Part 5: Durability Performance of the Patellofemoral Joint; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Halloran, J.P.; Clary, C.W.; Maletsky, L.P.; Taylor, M.; Petrella, A.J.; Rullkoetter, P.J. Verification of Predicted Knee Replacement Kinematics During Simulated Gait in the Kansas Knee Simulator. J. Biomech. Eng. 2010, 132, 081010. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, M.M.; Moazen, M.; Maniei, E.; Jin, Z. Posterior stabilized versus cruciate retaining total knee arthroplasty designs: Conformity affects the performance reliability of the design over the patient population. Med. Eng. Phys. 2015, 37, 350–360. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, Z. Prediction of in-vivo kinematics and contact track of total knee arthroplasty during walking. Biosurf. Biotribol. 2016, 2, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Kwon, O.-R.; Baek, C.; Jung, S.H.; Park, K.K. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Jt. Res. 2016, 5, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Osano, K.; Nagamine, R.; Todo, M.; Kawasaki, M. The effect of malrotation of tibial component of total knee arthroplasty on tibial insert during high flexion using a finite element analysis. Sci. World J. 2014, 2014, 695028. [Google Scholar] [CrossRef]
- Steinbrück, A.; Woiczinski, M.; Weber, P.; Müller, P.E.; Jansson, V.; Schröder, C. Posterior cruciate ligament balancing in total knee arthroplasty: A numerical study with a dynamic force controlled knee model. Biomed. Eng. Online 2014, 13, 91. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Barrett, D.S. Explicit finite element simulation of eccentric loading in total knee replacement. Clin. Orthop. Relat. Res. 2003, 414, 162–171. [Google Scholar] [CrossRef]
- Kebbach, M.; Darowski, M.; Krueger, S.; Schilling, C.; Grupp, T.M.; Bader, R.; Geier, A. Musculoskeletal Multibody Simulation Analysis on the Impact of Patellar Component Design and Positioning on Joint Dynamics after Unconstrained Total Knee Arthroplasty. Materials 2020, 13, 2365. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Kwon, O.-R.; Lee, J.-S.; Kwon, S.-K. Influence of Increased Posterior Tibial Slope in Total Knee Arthroplasty on Knee Joint Biomechanics: A Computational Simulation Study. J. Arthroplast. 2018, 33, 572–579. [Google Scholar] [CrossRef]
- Woiczinski, M.; Steinbruck, A.; Weber, P.; Muller, P.E.; Jansson, V.; Schröder, C. Development and validation of a weight-bearing finite element model for total knee replacement. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 1033–1045. [Google Scholar] [CrossRef]
- Rullkoetter, P.J.; Fitzpatrick, C.K.; Clary, C.W. How Can We Use Computational Modeling to Improve Total Knee Arthroplasty? Modeling Stability and Mobility in the Implanted Knee. J. Am. Acad. Orthop. Surg. 2017, 25 (Suppl. 1), S33–SS39. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Heller, M.O.; Kutzner, I. Standardized loads acting in knee implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef] [Green Version]
- Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Bergmann, G. Design, calibration and pre-clinical testing of an instrumented tibial tray. J. Biomech. 2007, 40 (Suppl. 1), S4–S10. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.; Kim, T.K.; Miehlke, R.K.; Hagen, T.; Grupp, T.M. Differences in anatomy and kinematics in Asian and Caucasian TKA patients.: Influence on implant positioning and subsequent loading conditions in mobile bearing knees. BioMed Res. Int. 2014, 2014, 612838. [Google Scholar] [CrossRef]
- Yao, J.Q.; Laurent, M.P.; Johnson, T.S.; Blanchard, C.R.; Crowninshield, R.D. The influences of lubricant and material on polymer/CoCr sliding friction. Wear 2003, 255, 780–784. [Google Scholar] [CrossRef]
- Fricker, D.C. Friction when femoral prosthesis heads slide in acetabular cups in Ceramics in substitutive and reconstructive surgery. In Proceedings of the Satellite Symposium 3 on Ceramics in Substitutive and Reconstructive Surgery, Montecatini Terme, Italy, 27–30 June 1990; Elsevier: New York, NY, USA, 1991; pp. 207–215. [Google Scholar]
- D’Lima, D.D.; Chen, P.C.; Colwell, C.W. Polyethylene Contact Stresses, Articular Congruity, and Knee Alignment. Clin. Orthop. Relat. Res. 2001, 392, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Kuriyama, S.; Ito, H.; Furu, M.; Nakamura, S.; Matsuda, S. Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: A case study on a single implant design. Knee 2015, 22, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Latypova, A.; Arami, A.; Becce, F.; Jolles-Haeberli, B.; Aminian, K.; Pioletti, D.P.; Terrier, A. A patient-specific model of total knee arthroplasty to estimate patellar strain: A case study. Clin. Biomech. 2016, 32, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, W.T.; Deakin, A.H.; Payne, A.P.; Picard, F.; Wearing, S.C. Comparative analysis of the structural properties of the collateral ligaments of the human knee. J. Orthop. Sports Phys. Ther. 2012, 42, 345–351. [Google Scholar] [CrossRef]
- Sugita, T.; Amis, A.A. Anatomic and biomechanical study of the lateral collateral and popliteofibular ligaments. Am. J. Sports Med. 2001, 29, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Trent, P.S.; Walker, P.S.; Wolf, B. Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint. Clin. Orthop. Relat. Res. 1976, 117, 263–270. [Google Scholar] [CrossRef]
- Wijdicks, C.A.; Ewart, D.T.; Nuckley, D.J.; Johansen, S.; Engebretsen, L.; LaPrade, R.F. Structural properties of the primary medial knee ligaments. Am. J. Sports Med. 2010, 38, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Marinozzi, G.; Pappalardo, S.; Steindler, R. Human Knee Ligaments: Mechanical Tests and Ultrastructural Observations. Ital. J. Orthop. Traumatol. 1983, 9, 231–240. [Google Scholar]
- Shu, L.; Yao, J.; Yamamoto, K.; Sato, T.; Sugita, N. In vivo kinematical validated knee model for preclinical testing of total knee replacement. Comput. Biol. Med. 2021, 132, 104311. [Google Scholar] [CrossRef] [PubMed]
- Navacchia, A.; Rullkoetter, P.J.; Schütz, P.; List, R.B.; Fitzpatrick, C.K.; Shelburne, K.B. Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J. Orthop. Res. 2016, 34, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Freed, R.D.; Simon, J.C.; Knowlton, C.B.; Orozco Villaseñor, D.A.; Wimmer, M.A.; Lundberg, H.J. Are Instrumented Knee Forces Representative of a Larger Population of Cruciate-Retaining Total Knee Arthroplasties? J. Arthroplast. 2017, 32, 2268–2273. [Google Scholar] [CrossRef]
- Kutzner, I.; Bender, A.; Dymke, J.; Duda, G.; von Roth, P.; Bergmann, G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Jt. J. 2017, 99-B, 779–787. [Google Scholar] [CrossRef]
- Ledingham, J.; Regan, M.; Jones, A.; Doherty, M. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann. Rheum. Dis. 1993, 52, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Fiocchi, A.; Condello, V.; Madonna, V.; Bonomo, M.; Zorzi, C. Medial vs lateral unicompartmental knee arthroplasty: Clinical results. Acta Biomed. 2017, 88, 38–44. [Google Scholar]
- Trepczynski, A.; Kutzner, I.; Kornaropoulos, E.; Taylor, W.R.; Duda, G.N.; Bergmann, G.; Heller, M.O. Patellofemoral joint contact forces during activities with high knee flexion. J. Orthop. Res. 2012, 30, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Dahlkvist, N.J.; Mayo, P.; Seedhom, B.B. Forces during Squatting and Rising from a deep squat. Eng. Med. 1982, 11, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Reilly, D.T.; Martens, M. Experimental Analysis of the Quadriceps Muscle Force and Patello-Femoral Joint Reaction Force for Various Activities. Acta Orthop. Scand. 1972, 43, 126–137. [Google Scholar] [CrossRef]
- Taylor, W.R.; Schütz, P.; Bergmann, G.; List, R.; Postolka, B.; Hitz, M.; Dymke, J.; Damm, P.; Duda, G.; Gerber, H.; et al. A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set. J. Biomech. 2017, 65, 32–39. [Google Scholar] [CrossRef]
- Fox, A.J.S.; Wanivenhaus, F.; Rodeo, S.A. The basic science of the patella: Structure, composition, and function. J. Knee Surg. 2012, 25, 127–141. [Google Scholar] [CrossRef]
- Lum, Z.C.; Saiz, A.M.; Pereira, G.C.; Meehan, J.P. Patella Baja in Total Knee Arthroplasty. J. Am. Acad. Orthop. Surg. 2020, 28, 316–323. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauer, A.; Maas, A.; Ottawa, S.; Giurea, A.; Grupp, T.M. Towards a New, Pre-Clinical, Subject-Independent Test Model for Kinematic Analysis after Total Knee Arthroplasty—Influence of the Proximo-Distal Patella Position and Patellar Tendon Stiffness. Appl. Sci. 2021, 11, 10322. https://doi.org/10.3390/app112110322
Sauer A, Maas A, Ottawa S, Giurea A, Grupp TM. Towards a New, Pre-Clinical, Subject-Independent Test Model for Kinematic Analysis after Total Knee Arthroplasty—Influence of the Proximo-Distal Patella Position and Patellar Tendon Stiffness. Applied Sciences. 2021; 11(21):10322. https://doi.org/10.3390/app112110322
Chicago/Turabian StyleSauer, Adrian, Allan Maas, Svenja Ottawa, Alexander Giurea, and Thomas M. Grupp. 2021. "Towards a New, Pre-Clinical, Subject-Independent Test Model for Kinematic Analysis after Total Knee Arthroplasty—Influence of the Proximo-Distal Patella Position and Patellar Tendon Stiffness" Applied Sciences 11, no. 21: 10322. https://doi.org/10.3390/app112110322
APA StyleSauer, A., Maas, A., Ottawa, S., Giurea, A., & Grupp, T. M. (2021). Towards a New, Pre-Clinical, Subject-Independent Test Model for Kinematic Analysis after Total Knee Arthroplasty—Influence of the Proximo-Distal Patella Position and Patellar Tendon Stiffness. Applied Sciences, 11(21), 10322. https://doi.org/10.3390/app112110322