Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece)
Abstract
:1. Introduction
2. Methodology
2.1. Reasons for the Choice of the Pilot Building
2.2. Building Description
2.3. Climate Aspects
2.4. Monitoring Set-Up
2.5. Instrumentation
3. Results and Discussion
3.1. Thermal Conditions
3.2. Indoor Air Quality
3.3. COVID-19 Restriction Impact
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilieș, D.; Marcu, F.; Caciora, T.; Indrie, L.; Ilieș, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, Ș.; Ilieș, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Hu, T.; Jia, W.; Cao, J.; Huang, R.-J.; Li, H.; Liu, S.; Ma, T.; Zhu, Y. Indoor air quality at five site museums of Yangtze River civilization. Atmos. Environ. 2015, 123, 449–454. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A. Microclimatic analysis of historic buildings: A new methodology for temperate climates. Build. Environ. 2014, 82, 381–387. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J. Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy Build. 2014, 85, 32–44. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A. Preventive conservation of historic buildings in temperate climates. The importance of a risk-based analysis on the decision-making process. Energy Build. 2015, 107, 26–36. [Google Scholar] [CrossRef]
- Grøntoft, T.; Marincas, O. Indoor air pollution impact on cultural heritage in an urban and a rural location in Romania: The National military museum in Bucharest and the Tismana monastery in Gorj County. Herit. Sci. 2018, 6, 73. [Google Scholar] [CrossRef]
- Śmiełowska, M.; Marć, M.; Zabiegała, B. Indoor air quality in public utility environments—A review. Environ. Sci. Pollut. Res. 2017, 24, 11166–11176. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public. Health 2017, 14, 1286. [Google Scholar] [CrossRef] [Green Version]
- Camuffo, D.; Della Valle, A.; Bertolin, C.; Leorato, C.; Bristot, A. Humidity and environmental diagnosis in Palazzo Grimani, Venice. In Indoor Environment and Preservation—Climate Control in Museums and Historic Buildings; Del Curto, D., Ed.; Nardini Editore: Florence, Italy, 2011; pp. 45–50. ISBN 9788840443393. [Google Scholar]
- Sileo, M.; Gizzi, F.T.; Masini, N. Low cost monitoring approach for the conservation of frescoes: The crypt of St. Francesco d’Assisi in Irsina (Basilicata, Southern Italy). J. Cult. Herit. 2017, 23, 89–99. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J.; Kaczmarczyk, J.; Blaszczok, M.; Lubina, P.; Koper, P.; Bulińska, A. Hygrothermal Risk in Museum Buildings Located in Moderate Climate. Energies 2020, 13, 344. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- ASHRAE. 2015 ASHRAE Handbook—HVAC Applications (I-P) (Ashrae Applications Handbook Inch/Pound) Har/Cdr Edition; Ashrae: Atlada, GA, USA, 2015. [Google Scholar]
- Krupińska, B.; van Grieken, R.; de Wael, K. Air quality monitoring in a museum for preventive conservation: Results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchem. J. 2013, 110, 350–360. [Google Scholar] [CrossRef]
- Mašková, L.; Smolík, J.; Ďurovič, M. Characterization of indoor air quality in different archives—Possible implications for books and manuscripts. Build. Environ. 2017, 120, 77–84. [Google Scholar] [CrossRef]
- Whitmore, P.M.; Cass, G.R. The ozone fading of traditional Japanese colorants. Stud. Conserv. 1988, 33, 29–40. [Google Scholar] [CrossRef]
- Shahani, C.J.; Wilson, W.K. Preservation of Libraries and Archives. Am. Sci. 1987, 75, 240–251. [Google Scholar]
- Chiantore, O.; Poli, T. Indoor Air Quality in Museum Display Cases: Volatile Emissions, Materials Contributions, Impacts. Atmosphere 2021, 12, 364. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Liu, C.-L.; Huang, K.-H.; Kuo, H.-W. Indoor and Outdoor Exposure to Volatile Organic Compounds and Health Risk Assessment in Residents Living near an Optoelectronics Industrial Park. Atmosphere 2019, 10, 380. [Google Scholar] [CrossRef] [Green Version]
- Ana-Maria, B.; Ion, S. Monitoring of Pollutants in Museum Environment. Present Environ. Sustain. Dev. 2015, 9, 173–180. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezicki, M. An Evaluation of Annual Luminous Exposure from Daylight in a Museum Room with a Translucent Ceiling. Buildings 2021, 11, 193. [Google Scholar] [CrossRef]
- Vyzantiadou, M.M.; Selevista, M. Protection of Cultural Heritage in Thessaloniki: A Review of Designation Actions. Heritage 2019, 2, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Nakielska, M.; Pawłowski, K. Conditions of the Internal Microclimate in the Museum. J. Ecol. Eng. 2020, 21, 205–209. [Google Scholar] [CrossRef]
- ElAdl, M.; Fathy, F.; Morsi, N.K.; Nessim, A.; Refat, M.; Sabry, H. Managing microclimate challenges for museum buildings in Egypt. Ain Shams Eng. J. 2021. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dimitroulopoulou, C.; Thornes, J.; Lai, K.-M.; Taylor, J.; Myers, I.; Heaviside, C.; Mavrogianni, A.; Shrubsole, C.; Chalabi, Z.; et al. Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environ. Int. 2015, 85, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future heat waves over the Mediterranean from an Euro-CORDEX regional climate model ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef]
- Cabeza, L.F.; de Gracia, A.; Pisello, A.L. Integration of renewable technologies in historical and heritage buildings: A review. Energy Build. 2018, 177, 96–111. [Google Scholar] [CrossRef]
- Pisello, A.L.; Petrozzi, A.; Castaldo, V.L.; Cotana, F. On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study. Appl. Energy 2016, 162, 1313–1322. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Pisello, A.L.; Boarin, P.; Petrozzi, A.; Cotana, F. The Experience of International Sustainability Protocols for Retrofitting Historical Buildings in Italy. Buildings 2017, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Zannis, G.; Santamouris, M.; Geros, V.; Karatasou, S.; Pavlou, K.; Assimakopoulos, M.N. Energy efficiency in retrofitted and new museum buildings in Europe. Int. J. Sustain. Energy 2006, 25, 199–213. [Google Scholar] [CrossRef]
- Lissen, J.M.S.; Escudero, C.I.J.; de la Flor, F.J.S.; Escudero, M.N.; Karlessi, T.; Assimakopoulos, M.-N. Optimal Renovation Strategies through Life-Cycle Analysis in a Pilot Building Located in a Mild Mediterranean Climate. Appl. Sci. 2021, 11, 1423. [Google Scholar] [CrossRef]
- KENAK—KANONIΣMOΣ ENEPΓEIAKHΣ AΠOΔOΣHΣ KΤIPIΩN (K.Eν.A.K.). Available online: http://www.kenak.gr/ (accessed on 25 September 2021).
- Salmerón, J.M.; Álvarez, S.; Molina, J.L.; Ruiz, A.; Sánchez, F.J. Tightening the energy consumptions of buildings depending on their typology and on Climate Severity Indexes. Energy Build. 2013, 58, 372–377. [Google Scholar] [CrossRef]
- Pegas, P.N.; Alves, C.; Evtyugina, M.; Nunes, T.; Cerqueira, M.; Franchi, M.; Pio, C.; Almeida, S.M.; Freitas, M.C. Indoor air quality in elementary schools of Lisbon in spring. Environ. Geochem. Health 2011, 33, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Detailed National Parameter Specifications for the Calculation of the Energy Performance of Buildings and the Issue of the Energy Performance Certificate—Building Regulations. TOTEE 20701-1/2017. Available online: http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/GR_ENERGEIAS/kenak/files/TOTEE_20701-1_2017_TEE_1st_Edition.pdf (accessed on 27 September 2021). (In Greek).
- ANSI/ASHRAE. Standard 62.1-2010, Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2010; Available online: http://arco-hvac.ir/wp-content/uploads/2016/04/ASHRAE-62_1-2010.pdf (accessed on 27 September 2021).
- Raatikainen, M.; Skön, J.-P.; Turunen, M.; Leiviskä, K.; Kolehmainen, M. Evaluating Effects of Indoor Air Quality in School Buildings and Students’ Health: A Study in Ten Schools of Kuopio, Finland. In Proceedings of the International Proceedings of Chemical, Biological and Environmental Engineering, Kuala Lumpur, Malaysia, 8–9 June 2013; Volume 51, pp. 80–86. Available online: http://www.ipcbee.com/vol51/016-ICEEB2013-A10018.pdf (accessed on 27 September 2021).
- Mečiarová, Ľ.; Vilčeková, S.; Krídlová Burdová, E.; Kiselák, J. Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households. Int. J. Environ. Res. Public Health 2017, 14, 1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | Parameter | Ground Floor | 1st Floor | 2nd Floor | Outdoor |
---|---|---|---|---|---|
2019 | |||||
February | T (°C) | 15.42 | 16.47 | 17.57 | 12.07 |
RH (%) | 52.13 | 50.52 | 47.30 | 63.13 | |
March | T (°C) | 16.75 | 17.12 | 18.39 | 15.97 |
RH (%) | 50.66 | 50.55 | 45.68 | 52.42 | |
April | T (°C) | 19.82 | 18.92 | 20.11 | 17.79 |
RH (%) | 50.46 | 51.42 | 48.70 | 56.10 | |
May | T (°C) | 21.50 | 21.44 | 23.92 | 22.15 |
RH (%) | 53.83 | 51.84 | 42.98 | 51.49 | |
June | T (°C) | 25.85 | 25.72 | 29.15 | 28.43 |
RH (%) | 52.49 | 51.22 | 41.71 | 44.68 | |
July | T (°C) | 26.11 | 26.15 | 27.85 | 30.15 |
RH (%) | 47.84 | 46.10 | 39.94 | 39.78 | |
August | T (°C) | 27.11 | 27.11 | 29.61 | 31.19 |
RH (%) | 40.30 | 43.94 | 36.96 | 35.53 | |
September | T (°C) | 25.40 | 26.63 | 28.12 | 27.43 |
RH (%) | 41.65 | 44.89 | 37.91 | 42.73 | |
October | T (°C) | 23.04 | 24.50 | 25.73 | 23.49 |
RH (%) | 53.36 | 53.03 | 45.47 | 55.29 | |
November | T (°C) | 20.72 | 21.62 | 20.38 | 19.18 |
RH (%) | 63.97 | 61.29 | 64.44 | 69.83 | |
December | T (°C) | 17.63 | 18.96 | 19.85 | 13.41 |
RH (%) | 55.57 | 53.21 | 51.30 | 54.90 | |
2020 | |||||
January | T (°C) | 14.67 | 16.48 | 18.29 | 10.37 |
RH (%) | 49.80 | 47.57 | 43.02 | 59.08 | |
February | T (°C) | 17.06 | 17.23 | 18.70 | 11.30 |
RH (%) | 48.50 | 49.93 | 45.20 | 54.90 | |
March | T (°C) | 16.33 | 17.36 | 18.74 | 16.44 |
RH (%) | 55.10 | 52.01 | 46.72 | 50.73 | |
April | T (°C) | 20.84 | 22.53 | 25.87 | 23.96 |
RH (%) | 53.84 | 50.38 | 41.24 | 45.99 | |
May | T (°C) | 23.22 | 24.73 | 27.77 | 26.88 |
RH (%) | 55.94 | 51.84 | 42.98 | 46.43 | |
June | T (°C) | 26.61 | 28.26 | 31.19 | 31.02 |
RH (%) | 49.03 | 45.28 | 37.00 | 38.00 | |
July | T (°C) | 27.63 | 29.30 | 31.91 | 30.93 |
RH (%) | 48.38 | 44.30 | 37.06 | 40.23 | |
August | T (°C) | 27.63 | 29.30 | 31.95 | 30.96 |
RH (%) | 48.38 | 44.30 | 37.06 | 40.23 | |
2021 | |||||
January | T (°C) | 15.28 | 16.46 | 16.81 | 13.28 |
RH (%) | 57.89 | 56.13 | 54.87 | 65.08 | |
February | T (°C) | 20.25 | 17.21 | 18.24 | 13.61 |
RH (%) | 44.99 | 52.80 | 49.61 | 63.22 | |
March | T (°C) | 16.66 | 17.52 | 17.76 | 15.04 |
RH (%) | 46.29 | 45.25 | 45.12 | 52.12 | |
April | T (°C) | 16.91 | 17.69 | 19.03 | 17.46 |
RH (%) | 51.58 | 49.69 | 46.40 | 50.76 |
Experimental Point | Cold Period (October–April) | Warm Period (May–September) | |||
---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | |
Auditorium | 15% | 5% | 7% | 28% | 19% |
Entrance | 6% | 4% | 5% | 41% | 15% |
Law | 18% | 5% | 6% | 45% | 26% |
Medicine | 15% | 2% | 2% | 37% | 21% |
Pr. Room | 3% | 0% | 0% | 17% | 28% |
Dentistry | 1% | 1% | 0% | 45% | 25% |
Offices | 51% | 40% | 33% | 18% | 25% |
Philosophy | 20% | 15% | 4% | 37% | 15% |
App. Science | 20% | 20% | 7% | 27% | 16% |
Museum (in total) | 17% | 10% | 7% | 33% | 21% |
Experimental Point | 2019 vs. 2020 | 2019 vs. 2021 |
---|---|---|
Auditorium | 247% | 238% |
Entrance | 31% | 108% |
Law | 11% | 57% |
Medicine | 6% | 42% |
Pr. Room | 25% | 35% |
Dentistry | 11% | 27% |
Offices | −2% | 83% |
Philosophy | 14% | 145% |
App. Sciences | 36% | 140% |
Museum (in total) | 42% | 97% |
Experimental Point | 2019 vs. 2020 | 2019 vs. 2021 |
---|---|---|
Auditorium | −4% | −4% |
Entrance | −1% | −1% |
Law | −1% | −2% |
Medicine | −2% | −4% |
Pr. Room | −4% | −7% |
Dentistry | −3% | −6% |
Offices | −3% | −6% |
Philosophy | −5% | −4% |
App. Sciences | −2% | −3% |
Museum (in total) | −2.8% | −4.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efthymiou, C.; Barmparesos, N.; Tasios, P.; Ntouros, V.; Zoulis, V.; Karlessi, T.; Salmerón Lissén, J.M.; Assimakopoulos, M.N. Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece). Appl. Sci. 2021, 11, 10133. https://doi.org/10.3390/app112110133
Efthymiou C, Barmparesos N, Tasios P, Ntouros V, Zoulis V, Karlessi T, Salmerón Lissén JM, Assimakopoulos MN. Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece). Applied Sciences. 2021; 11(21):10133. https://doi.org/10.3390/app112110133
Chicago/Turabian StyleEfthymiou, Chrysanthi, Nikolaos Barmparesos, Panagiotis Tasios, Vasileios Ntouros, Vasileios Zoulis, Theoni Karlessi, José Manuel Salmerón Lissén, and Margarita Niki Assimakopoulos. 2021. "Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece)" Applied Sciences 11, no. 21: 10133. https://doi.org/10.3390/app112110133
APA StyleEfthymiou, C., Barmparesos, N., Tasios, P., Ntouros, V., Zoulis, V., Karlessi, T., Salmerón Lissén, J. M., & Assimakopoulos, M. N. (2021). Indoor Environmental Quality Evaluation Strategy as an Upgrade (Renovation) Measure in a Historic Building Located in the Mediterranean Zone (Athens, Greece). Applied Sciences, 11(21), 10133. https://doi.org/10.3390/app112110133