On the Omnipresence and Potential of Plasma Technology
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morfill, G.E.; Ivlev, A.V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 2009, 81, 1353. [Google Scholar] [CrossRef]
- Stauss, S.; Muneoka, H.; Terashima, K. Review on plasmas in extraordinary media: Plasmas in cryogenic conditions and plasmas in supercritical fluids. Plasma Sources Sci. Technol. 2018, 27, 023003. [Google Scholar] [CrossRef]
- Shalashov, A.G.; Vodopyanov, A.V.; Abramov, I.S.; Sidorov, A.V.; Gospodchikov, E.D.; Razin, S.V.; Chkhalo, N.I.; Salashchenko, N.N.; Glyavin, M.Y.; Golubev, S.V. Observation of extreme ultraviolet light emission from an expanding plasma jet with multiply charged argon or xenon ions. Appl. Phys. Lett. 2018, 113, 153502. [Google Scholar] [CrossRef] [Green Version]
- Hermann, J.; Grojo, D.; Axente, E.; Gerhard, C.; Burger, M.; Craciun, V. Ideal radiation source for plasma spectroscopy generated by laser ablation. Phys. Rev. E 2017, 96, 53210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleb, A.; Shen, C.; Mory, D.; Cieślik, K.; Merk, S.; Aziz, M.R.; Caricato, A.P.; Gerhard, C.; Pelascini, F.; Hermann, J. Echelle spectrometer calibration by means of laser plasma. Spectrochim. Acta B 2021, 178, 106144. [Google Scholar] [CrossRef]
- Labruyère, A.; Jaffres, L.; Couderc, V. Q-switching of a microchip laser using a plasma prism. Laser Phys. Lett. 2012, 9, 363–367. [Google Scholar] [CrossRef]
- Liu, D.; Szili, E.J.; Ostrikov, K. Plasma medicine: Opportunities for nanotechnology in a digital age. Plasma Process. Polym. 2020, 17, e2000097. [Google Scholar] [CrossRef]
- Tiede, R.; Hirschberg, J.; Daeschlein, G.; von Woedtke, T.; Viöl, W.; Emmert, S. Plasma Applications: A Dermatological View. Contrib. Plasma Phys. 2014, 54, 118–130. [Google Scholar] [CrossRef]
- Robert, E.; Vandamme, M.; Brullé, L.; Lerondel, S.; Le Pape, A.; Sarron, V.; Riès, D.; Darny, T.; Dozias, S.; Collet, G.; et al. Perspectives of endoscopic plasma applications. Clin. Plasma Med. 2013, 1, 8–16. [Google Scholar] [CrossRef]
- Puač, N.; Gherardi, M.; Shiratani, M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2018, 15, 170017. [Google Scholar] [CrossRef]
- Tasche, D.; Weber, M.; Mrotzek, J.; Gerhard, C.; Wieneke, S.; Möbius, W.; Höfft, O.; Viöl, W. In-situ investigation of the formation kinematics of plasma-generated silver nanoparticles. Nanomaterials 2020, 10, 555. [Google Scholar] [CrossRef] [Green Version]
- Ostrikov, K.; Murphy, A.B. Plasma-aided nanofabrication: Where is the cutting edge? J. Phys. D: Appl. Phys. 2007, 40, 2223–2241. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, Z.; Tang, W.; Tang, N.; Zhao, H.; Lin, H. Study of attenuation characteristics of electromagnetic waves in multilayer plasma slabs. J. Appl. Phys. 2019, 125, 094902. [Google Scholar] [CrossRef]
- Ahedo, E. Plasmas for space propulsion. Plasma Phys. Control. Fusion 2011, 53, 124037. [Google Scholar] [CrossRef]
- Gredner, A.; Gerhard, C.; Wieneke, S.; Schmidt, K.; Viöl, W. Increase in generation of poly-crystalline silicon by atmospheric pressure plasma-assisted excimer laser annealing. J. Mater. Sci. Eng. B 2013, 3, 346–351. [Google Scholar]
- Gerhard, C.; Gimpel, T.; Tasche, D.; Koch, J.; Brückner, S.; Flachenecker, G.; Wieneke, S.; Schade, W.; Viöl, W. Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium. J. Phys. D 2018, 51, 175201. [Google Scholar] [CrossRef]
- Shukla, P.K.; Eliasson, B. Recent developments in quantum plasma physics. Plasma Phys. Control. Fusion 2010, 52, 124040. [Google Scholar] [CrossRef]
- Vanraes, P.; Bogaerts, A. Plasma physics of liquids—A focused review. Appl. Phys. Rev. 2018, 5, 031103. [Google Scholar] [CrossRef]
- Barnes, R.M. Inductively coupled plasma atomic emission spectroscopy: A review. Trends Anal. Chem. 1981, 1, 51–55. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma–Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community. Appl. Spectrosc. 2010, 64, 335A–366A. [Google Scholar] [CrossRef] [Green Version]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef] [PubMed]
- Cousin, A.; Anderson, R.; Forni, O.; Benzerara, K.; Mangold, N.; Beck, P.; Dehouck, E.; Ollila, A.; Meslin, P.-Y.; Gibbons, E.; et al. Observations of Rocks in Jezero Landing Site: SuperCam/LIBS technique overview of results from the first six months of operations. In Proceedings of the European Planetary Science Congress 2021, Online, 13–24 September 2021. EPSC2021-644. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhard, C. On the Omnipresence and Potential of Plasma Technology. Appl. Sci. 2021, 11, 9707. https://doi.org/10.3390/app11209707
Gerhard C. On the Omnipresence and Potential of Plasma Technology. Applied Sciences. 2021; 11(20):9707. https://doi.org/10.3390/app11209707
Chicago/Turabian StyleGerhard, Christoph. 2021. "On the Omnipresence and Potential of Plasma Technology" Applied Sciences 11, no. 20: 9707. https://doi.org/10.3390/app11209707
APA StyleGerhard, C. (2021). On the Omnipresence and Potential of Plasma Technology. Applied Sciences, 11(20), 9707. https://doi.org/10.3390/app11209707