Malus Antioxidant Metabolism Following Bacterial–Fungal Inoculation in Organic Farming: From Root to Fruit
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Field, Weather and Soil Conditions
2.2. Root, Leaf and Fruit Sample Collection and Analysis
2.3. Antioxidant Measurements
2.4. Statistical Analysis and Presentation of Data
3. Results
3.1. Statistical Analysis
3.2. Antioxidant Enzyme Activity upon Bacterial-Fungal Inoculation: From Root to Fruit
3.3. Non-Enzymatic Antioxidants upon Bacterial–Fungal Inoculation: From Root to Fruit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derkowska, E.; Sas Paszt, L.; Głuszek, S.; Trzciński, P.; Przybył, M.; Frąc, M. Effects of treatment of apple trees with various bioproducts on tree growth and occurrence of mycorrhizal fungi in the roots. Acta Sci. Pol. Hortorum Cultus 2017, 16, 75–83. [Google Scholar] [CrossRef]
- Avio, L.; Turrini, A.; Giovannetti, M.; Sbrana, C. Designing the ideotype mycorrhizal symbionts for the production of healthy food. Front. Plant Sci. 2018, 9, 1089. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi—From ecology to application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- Njeru, E.M. Exploiting diversity to promote arbuscular mycorrhizal symbiosis and crop productivity in organic farming systems. AIMS Agric. Food 2018, 3, 280–294. [Google Scholar] [CrossRef]
- Karlidag, H.; Esitken, A.; Turan, M.; Sahin, F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic. 2007, 114, 16–20. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; Van der Heijden, M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusznierewicz, B.; Lewandowska, A.; Martysiak-Zurowska, D.; Bartoszek, A. The influence of plant protection by effective microorganisms on the content of bioactive phytochemicals in apples. J. Sci. Food Agric. 2017, 97, 3937–3947. [Google Scholar] [CrossRef] [PubMed]
- Berdeni, D.; Cotton, T.E.A.; Daniell, T.J.; Bidartondo, M.I.; Cameron, D.D.; Evans, K.L. The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). Front. Microbiol. 2018, 9, 1461. [Google Scholar] [CrossRef]
- Ortas, I. Role of mycorrhizae on mineral nutrition of fruit trees. Acta Hortic. 2018, 1217, 271–283. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef]
- Santoyo, G.; Gamalero, E.; Glick, B.R. Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Front. Sustain. Food Syst. 2021, 5, 672881. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Chaoxing, H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Hart, M.; Ehret, D.L.; Krumbein, A.; Leung, C.; Murch, S.; Turi, C.; Franken, P. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 2015, 25, 359–376. [Google Scholar] [CrossRef]
- Gąstoł, M.; Domagała-Światkiewicz, I. Mycorrhizal inoculation of apple in replant soils—Enhanced tree growth and mineral nutrient status. Acta Sci. Pol. Hortorum Cultus 2015, 14, 17–37. [Google Scholar]
- Przybyłko, S.; Kowalczyk, W.; Wrona, D. The effect of mycorrhizal fungi and PGPR on tree nutritional status and growth in organic apple production. Agronomy 2021, 11, 1402. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N.; Xia, R.X. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur. J. Soil Biol. 2006, 42, 166–172. [Google Scholar] [CrossRef]
- Fouad, O.M.; Essahibi, A.; Benhiba, L.; Qaddoury, A. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span. J. Agric. Res. 2014, 12, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, L.B.; Ochoa-Hueso, R.; Manrique, E.; Pugnaire, F.I. Different mycorrhizal fungal strains determine plant community response to nitrogen and water availability. J. Plant Nutr. Soil Sci. 2015, 178, 146–154. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Zhu, H.H.; Zhao, H.Q.; Yao, Q. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J. Plant Physiol. 2013, 170, 74–79. [Google Scholar] [CrossRef]
- Gao, W.Q.; Lü, L.H.; Srivastava, A.K.; Wu, Q.S.; Kuca, K. Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy 2020, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.S.; Cao, M.Q.; Zou, Y.N.; He, X. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci. Rep. 2014, 4, 5823. [Google Scholar] [CrossRef]
- Porcel, R.; Barea, J.M.; Ruiz-Lozano, J.M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist. 2003, 157, 135–143. [Google Scholar] [CrossRef]
- Bressano, M.; Curetti, M.; Giachero, L.; Vargas Gil, S.; Cabello, M.; March, G.; Ducasse, D.A.; Luna, C.M. Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J. Plant Physiol. 2010, 167, 1622–1626. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Sahraoui, A.L.H. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef]
- Dutta, S.C.; Neog, B. Accumulation of secondary metabolites in response to antioxidant activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Sci. Hortic. 2016, 204, 179–184. [Google Scholar] [CrossRef]
- Chang, W.; Sui, X.; Fan, X.; Jia, T.; Song, F. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front. Microbiol. 2018, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Ma, M.; Wang, Q.; Zhang, M.; Jing, G.; Li, C.; Ma, F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol. Biochem. 2020, 149, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Karoglan, M.; Radić, T.; Anić, M.; Andabaka, Ž.; Stupić, D.; Tomaz, I.; Mesić, J.; Karažija, T.; Petek, M.; Lazarević, B.; et al. Mycorrhizal fungi enhance yield and berry chemical composition of in field grown “Cabernet Sauvignon” grapevines (V. vinifera L.). Agriculture 2021, 11, 615. [Google Scholar] [CrossRef]
- Torres, N.; Antolín, M.C.; Goicoechea, N. Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments. Front. Plant Sci. 2018, 9, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnolucci, M.; Avio, L.; Palla, M.; Sbrana, C.; Turrini, A.; Giovannetti, M. Health-promoting properties of plant products: The role of mycorrhizal fungi and associated bacteria. Agronomy 2020, 10, 1864. [Google Scholar] [CrossRef]
- Łata, B.; Przeradzka, M.; Bińkowska, M. Great differences in antioxidant properties exist between 56 apple cultivars and vegetation seasons. J. Agric. Food Chem. 2005, 53, 8970–8978. [Google Scholar] [CrossRef] [PubMed]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
- Gosling, P.; Ozaki, A.; Jones, J.; Turner, M.; Rayns, F.; Bending, G.D. Organic management of tilled agricultural soils results in a rapid increase in colonization potential and spore populations of arbuscular mycorrhizal fungi. Agric. Ecosyst. Environ. 2010, 139, 273–279. [Google Scholar] [CrossRef]
- Gottshall, C.B.; Cooper, M.; Emery, S.M. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agric. Ecosyst. Environ. 2017, 241, 142–149. [Google Scholar] [CrossRef]
- Turrini, A.; Agnolucci, M.; Palla, M.; Tomé, E.; Tagliavini, M.; Scandellari, F.; Giovannetti, M. Species diversity and community composition of native arbuscular mycorrhizal fungi in apple roots are affected by site and orchard management. Appl. Soil Ecol. 2017, 116, 42–54. [Google Scholar] [CrossRef]
- Cavallazzi, J.R.P.; Filho, O.K.; Sturmer, S.L.; Rygiewicz, P.T.; Matos de Mendonca, M. Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tissue Organ Cult. 2007, 90, 117–129. [Google Scholar] [CrossRef]
- Ridgway, H.J.; Kandula, J.; Stewart, A. Arbuscular mycorrhiza improve apple rootstock growth in soil conducive to specific apple replant disease. New Zealand Plant Prot. 2008, 61, 48–53. [Google Scholar] [CrossRef]
- Raj, H.; Sharma, S.D. Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. Sci. Hortic. 2009, 119, 126–131. [Google Scholar] [CrossRef]
- Łata, B. Relationship between apple peel and the whole fruit antioxidant content: Year and cultivar variation. J. Agric. Food Chem. 2007, 55, 663–671. [Google Scholar] [CrossRef]
- Stefaniak, J.; Łata, B. Actinidia arguta leaf as a donor of potentially healthful bioactive compounds: Implications of cultivar, time of sampling and soil N level. Molecules 2021, 26, 3871. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.B. Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 1998, 823, 331–337. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, R.; Chen, W.; Gu, Z.; Xie, X.; Zhao, H.; Yao, Q. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. J. Plant Physiol. 2015, 178, 27–34. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, O.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Anee, T.I.; Parvin, K.; Nahar, K.; Al Mahmud, J.; Fujita, M. Regulation of Ascorbate-Glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 2019, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Ralph Hückelhoven, R.; Neumann, C.; Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, M.; Avio, L.; Barale, R.; Ceccarelli, N.; Cristofani, R.; Iezzi, A.; Mignolli, F.; Picciarelli, P.; Pinto, B.; Reali, D.; et al. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 2012, 107, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Rahman, S.; Bilal, M.; Dan-feng, H. Role of flavonoids in plant interactions with the environment and against human pathogens—A review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Łata, B.; Trąmpczyńska, A.; Pacześna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Volz, R.K.; Mc Ghie, T.K. Genetic variability in apple fruit polyphenol composition in Malus x domestica and Malus sieversii germplasm grown in New Zealand. J. Agric. Food Chem. 2011, 59, 11509–11521. [Google Scholar] [CrossRef] [PubMed]
- Skłodowska, M.; Mikiciński, A.; Wielanek, M.; Kuźniak, E.; Sobiczewski, P. Phenolic profiles in apple leaves and the efficacy of selected phenols against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2018, 15, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Li, J.F.; He, X.H.; Li, H.; Zheng, W.J.; Liu, J.F.; Wang, M.Y. Arbuscular mycorrhizal fungi increase growth and phenolics synthesis in Poncirus trifoliata under iron deficiency. Sci. Hortic. 2015, 183, 87–92. [Google Scholar] [CrossRef]
- Ceccarelli, N.; Curadi, M.; Martelloni, L.; Sbrana, C.; Picciarelli, P.; Giovannetti, M. Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 2010, 335, 311–323. [Google Scholar] [CrossRef]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
- Parada, J.; Valenzuela, T.; Gómez, F.; Tereucán, G.; García, S.; Cornejo, P.; Winterhalter, P.; Ruiza, A. Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in Fragaria ananassa fruit. J. Sci. Food Agric. 2019, 99, 1397–1404. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
Component | Growing Season | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | |||||||||||
Source of Variation | ||||||||||||
Cultivar (A) | Inoculation (B) | Interaction: | Cultivar (A) | Inoculation (B) | Interaction: | |||||||
AB | AB | |||||||||||
df | 2 | 1 | 2 | 2 | 1 | 2 | ||||||
ROOT | ||||||||||||
L-AA+DHAA | 30.2 | *** | 15.8 | *** | 7.62 | ** | 30.2 | *** | 74.6 | *** | 8.47 | ** |
L-Cys | 9.49 | ** | 25.5 | *** | 3.65 | * | 6.96 | ** | 2.00 | ns | 0.99 | ns |
GSH+GSSG | 1.05 | ns | 25.2 | *** | 4.60 | * | 6.82 | ** | 19.7 | *** | 8.10 | ** |
TPC | 1.17 | ns | 0.02 | ns | 0.95 | ns | 0.94 | ns | 0.06 | ns | 0.30 | ns |
GR | 618 | *** | 87.6 | *** | 9.49 | ** | 9.03 | ** | 43.7 | *** | 4.14 | * |
CAT | 13.7 | *** | 19.2 | *** | 0.70 | ns | 14.3 | *** | 5.97 | * | 6.21 | ** |
LEAF | ||||||||||||
L-AA+DHAA | 0.58 | ns | 1.67 | ns | 4.88 | * | 11.8 | *** | 0.34 | ns | 5.16 | * |
L-Cys | 6.35 | ** | 0.68 | ns | 0.24 | ns | 26.5 | *** | 29.3 | *** | 8.27 | ** |
GSH + GSSG | 1.94 | ns | 6.25 | * | 0.23 | ns | 28.1 | *** | 24.3 | *** | 6.81 | ** |
TPC | 1.47 | ns | 0.57 | ns | 0.39 | ns | 8.82 | ** | 6.46 | * | 7.16 | ** |
GR | 5.41 | * | 11.3 | ** | 0.29 | ns | 32.4 | *** | 1.99 | ns | 2.01 | ns |
CAT | 4.47 | * | 7.02 | * | 1.53 | ns | 11.9 | *** | 3.05 | ns | 7.37 | ** |
FRUIT | ||||||||||||
L-AA+DHAA | 10.5 | *** | 0.07 | ns | 6.79 | ** | 19.9 | *** | 1.68 | ns | 0.99 | ns |
L-Cys | 26.7 | *** | 2.55 | ns | 0.45 | ns | 0.89 | ns | 0.00 | ns | 1.79 | ns |
GSH+GSSG | 23.9 | *** | 2.85 | ns | 0.55 | ns | 7.89 | ** | 0.00 | ns | 0.33 | ns |
TPC | 8.61 | ** | 0.55 | ns | 2.48 | ns | 10.6 | *** | 3.25 | ns | 4.35 | * |
GR | 2.34 | ns | 0.09 | ns | 1.95 | ns | 38.4 | *** | 0.00 | ns | 0.18 | ns |
CAT | 25.7 | *** | 6.92 | ** | 1.58 | ns | 1.36 | ns | 0.14 | ns | 0.14 | ns |
Treatment | Growing Season | Growing Season | ||||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | |||||||
Cultivar | Cultivar | |||||||
Topaz | Chopin | Odra | Topaz | Chopin | Odra | |||
ROOT | AvT | AvT | ||||||
Glutathione reductase (nkat g−1 FW) | ||||||||
N-INO a | 0.66 ± 0.10 | 1.36 ± 0.08 | 0.91 ± 0.03 | 0.97 A | 0.64 ± 0.05 | 0.90 ± 0.21 | 1.08 ± 0.14 | 0.87 A |
INO b | 1.59 ± 0.15 | 2.13 ± 0.07 | 2.08 ± 0.08 | 1.93 B | 1.23 ± 0.04 | 2.37 ± 0.79 | 1.75 ± 0.04 | 1.79 B |
Avcv | 1.12 a | 1.74 c | 1.49 b | 0.93 a | 1.64 b | 1.42 b | ||
Catalase (nkat g−1 FW) | ||||||||
N-INO | 2.41 ± 0.37 | 3.06 ± 0.25 | 2.73 ± 0.11 | 2.73 A | 3.93 ± 0.53 | 5.88 ± 0.48 | 5.19 ± 0.59 | 5.00 B |
INO | 2.94 ± 0.18 | 3.71 ± 0.37 | 3.06 ± 0.31 | 3.24 B | 4.33 ± 0.21 | 5.39 ± 0.89 | 3.43 ± 0.76 | 4.38 A |
Avcv | 2.67 a | 3.39 b | 2.89 a | 4.13 a | 5.64 b | 4.31 a | ||
LEAF | ||||||||
Glutathione reductase (nkat g−1 FW) | ||||||||
N-INO | 16.9 ± 2.1 | 13.8 ± 1.4 | 17.5 ± 2.4 | 16.1 A | 28.7 ± 3.8 | 19.5 ± 2.5 | 17.5 ± 2.1 | 21.9 A |
INO | 19.4 ± 4.0 | 17.3 ± 1.6 | 21.9 ± 2.8 | 19.5 B | 29.7 ± 3.9 | 24.6 ± 2.4 | 16.6 ± 3.0 | 23.7 A |
Avcv | 18.2 a | 15.6 ab | 19.7 b | 29.2 c | 22.1 b | 17.1 a | ||
Catalase (nkat g−1 FW) | ||||||||
N-INO | 3.46 ± 0.53 | 2.11 ± 0.61 | 2.68 ± 0.46 | 2.75 B | 3.74 ± 0.23 | 3.12 ± 0.55 | 4.28 ± 0.56 | 3.71 A |
INO | 2.09 ± 0.69 | 1.53 ± 0.21 | 2.46 ± 1.14 | 2.02 A | 3.02 ± 0.71 | 4.32 ± 0.49 | 4.91 ± 0.40 | 4.08 A |
Avcv | 2.78 b | 1.82 a | 2.57 b | 3.38 a | 3.72 a | 4.60 b | ||
FRUIT | ||||||||
Glutathione reductase (nkat g−1 FW) | ||||||||
N-INO | 2.65 ± 0.48 | 2.99 ± 0.37 | 2.15 ± 0.22 | 2.60 A | 2.40 ± 0.33 | 2.23 ± 0.42 | 4.63 ± 1.01 | 3.08 A |
INO | 2.49 ± 0.59 | 2.76 ± 0.54 | 2.69 ± 0.29 | 2.65 A | 2.18 ± 0.14 | 2.36 ± 0.52 | 4.70 ± 0.86 | 3.09 A |
Avcv | 2.57 a | 2.88 a | 2.42 a | 2.29 a | 2.30 a | 4.66 b | ||
Catalase (nkat g−1 FW) | ||||||||
N-INO | 3.92 ± 0.37 | 4.56 ± 1.26 | 6.01 ± 0.76 | 4.83 A | 3.76 ± 0.78 | 4.41 ± 1.24 | 4.65 ± 1.04 | 4.27 A |
INO | 4.48 ± 0.54 | 4.87 ± 0.49 | 7.62 ± 0.87 | 5.66 B | 3.83 ± 0.60 | 4.33 ± 0.53 | 4.26 ± 0.83 | 4.14 A |
Avcv | 4.20 a | 4.71 a | 6.82 b | 3.80 a | 4.37 a | 4.46 a |
Treatment | Growing Season | Growing Season | ||||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | |||||||
Cultivar | Cultivar | |||||||
Topaz | Chopin | Odra | Topaz | Chopin | Odra | |||
ROOT | AvT | AvT | ||||||
Ascorbate c (mmol kg−1 FW) | ||||||||
N-INO a | 0.39 ± 0.07 | 0.54 ± 0.02 | 0.44 ± 0.05 | 0.46 A | 0.78 ± 0.08 | 0.58 ± 0.05 | 0.81 ± 0.12 | 0.72 B |
INO b | 0.53 ± 0.05 | 0.64 ± 0.02 | 0.41 ± 0.04 | 0.53 B | 0.67 ± 0.01 | 0.36 ± 0.03 | 0.43 ± 0.06 | 0.49 A |
Avcv | 0.46 a | 0.59 b | 0.43 a | 0.73 c | 0.47 a | 0.62 b | ||
L-Cysteine (μmol kg−1 FW) | ||||||||
N-INO | 1.08 ± 0.19 | 2.98 ± 0.63 | 1.50 ± 0.48 | 1.85 A | 2.96 ± 0.40 | 2.91 ± 0.75 | 4.03 ± 0.23 | 3.30 A |
INO | 2.47 ± 0.27 | 3.44 ± 0.52 | 3.75 ± 0.88 | 3.22 B | 2.95 ± 0.65 | 3.80 ± 0.51 | 4.29 ± 1.06 | 3.68 A |
Avcv | 1.78 a | 3.21 b | 2.62 ab | 2.96 a | 3.36 ab | 4.16 b | ||
Glutathione d (μmol kg−1 FW) | ||||||||
N-INO | 80.3 ± 17.2 | 50.8 ± 12.5 | 73.1 ± 7.8 | 68.1 A | 108 ± 41 | 67.3 ± 5.2 | 169 ± 20 | 115 A |
INO | 107 ± 23 | 192 ± 49 | 141 ± 26 | 147 B | 150 ± 21 | 176 ± 41 | 168 ± 17 | 165 B |
Avcv | 93.7 a | 121.5 a | 107.1 a | 128.9 a | 121.7 a | 168.9 b | ||
Phenolics e (g kg−1 FW) | ||||||||
N-INO | 20.7 ± 1.56 | 18.9 ± 2.24 | 20.5 ± 1.20 | 20.0 A | 15.1 ± 1.81 | 16.3 ± 1.81 | 16.5 ± 0.96 | 15.9 A |
INO | 19.3 ± 2.00 | 19.7 ± 1.58 | 20.7 ± 1.31 | 19.9 A | 15.8 ± 1.80 | 16.1 ± 0.98 | 16.3 ± 0.96 | 16.1 A |
Avcv | 20.0 a | 19.3 a | 20.6 a | 15.5 a | 16.2 a | 16.4 a | ||
LEAF | ||||||||
Ascorbate mmol kg−1 FW) | ||||||||
N-INO | 29.2 ± 3.01 | 30.4 ± 2.39 | 26.4 ± 3.88 | 28.7 A | 25.8 ± 3.12 | 19.5 ± 1.70 | 27.2 ± 3.60 | 24.2 A |
INO | 31.4 ± 6.78 | 26.6 ± 0.80 | 33.8 ± 1.69 | 30.6 A | 19.9 ± 3.72 | 23.0 ± 5.29 | 32.2 ± 3.78 | 25.1 A |
Avcv | 30.3a | 28.5a | 30.1a | 22.9a | 21.3a | 29.7b | ||
L-Cysteine (μmol kg−1 FW) | ||||||||
N-INO | 10.0 ± 0.1 | 11.3 ± 2.0 | 12.3 ± 1.4 | 11.2 A | 8.40 ± 0.39 | 8.15 ± 1.35 | 11.1 ± 0.98 | 9.21 A |
INO | 10.8 ± 0.8 | 11.2 ± 1.5 | 12.9 ± 0.9 | 11.6 A | 8.87 ± 1.04 | 12.0 ± 0.55 | 12.4 ± 0.49 | 11.1 B |
Avcv | 10.4 a | 11.2 a | 12.7 b | 8.64 a | 10.1 b | 11.8 c | ||
Glutathione (μmol kg−1 FW) | ||||||||
N-INO | 1058 ± 76 | 1138 ± 138 | 1133 ± 175 | 1110A | 690 ± 41 | 820 ± 159 | 917 ± 69 | 809 A |
INO | 1147 ± 94 | 1282 ± 141 | 1314 ± 159 | 1247B | 733 ± 85 | 1163 ± 48 | 1040 ± 35 | 979 B |
Avcv | 1103 a | 1210 a | 1224 a | 712 a | 992 b | 979 b | ||
Phenolics (g kg−1 FW) | ||||||||
N-INO | 14.0 ± 1.33 | 13.1 ± 2.61 | 13.7 ± 3.77 | 13.6 A | 24.7 ± 2.79 | 24.1 ± 1.10 | 29.0 ± 2.05 | 25.9 A |
INO | 15.7 ± 1.10 | 12.7 ± 0.71 | 14.5 ± 2.93 | 14.3 A | 24.6 ± 1.21 | 30.7 ± 2.86 | 28.9 ± 1.52 | 28.0 B |
Avcv | 14.9 a | 12.9 a | 14.1 a | 24.7 a | 27.4 b | 28.9 b | ||
FRUIT | ||||||||
Ascorbate mmol kg−1 FW) | ||||||||
N-INO a | 4.45 ± 0.67 | 3.63 ± 0.59 | 3.37 ± 0.56 | 3.82 A | 4.86 ± 0.83 | 2.77 ± 0.44 | 4.09 ± 0.36 | 3.91 A |
INO b | 4.80 ± 0.99 | 2.21 ± 0.24 | 4.69 ± 1.13 | 3.90 A | 4.70 ± 0.76 | 3.36 ± 0.21 | 4.55 ± 0.52 | 4.20 A |
Avcv | 4.63 b | 2.92 a | 4.03 b | 4.78 b | 3.06 a | 4.32 b | ||
L-Cysteine (μmol kg−1 FW) | ||||||||
N-INO | 5.01 ± 0.60 | 8.45 ± 0.75 | 6.67 ± 0.50 | 6.71 A | 7.26 ± 0.97 | 6.95 ± 0.58 | 7.18 ± 1.34 | 7.13 A |
INO | 5.56 ± 1.11 | 9.67 ± 1.14 | 6.93 ± 1.04 | 7.39 A | 6.93 ± 0.95 | 7.96 ± 1.15 | 6.44 ± 0.91 | 7.11 A |
Avcv | 5.28 a | 9.06 c | 6.80 b | 7.10 a | 7.46 a | 6.81 a | ||
Glutathione (μmol kg−1 FW) | ||||||||
N-INO | 256 ± 31 | 371 ± 28 | 320 ± 23 | 316 A | 305 ± 52 | 371 ± 32 | 421 ± 73 | 366 A |
INO | 260 ± 43 | 417 ± 53 | 351 ± 49 | 343 A | 303 ± 39 | 396 ± 73 | 400 ± 53 | 366 A |
Avcv | 258 a | 394 c | 335 b | 304 a | 384 b | 411 b | ||
Phenolics (g kg−1 FW) | ||||||||
N-INO | 3.46 ± 0.62 | 3.33 ± 0.37 | 4.22 ± 0.60 | 3.67 A | 4.99 ± 0.44 | 5.66 ± 0.19 | 7.10 ± 1.00 | 5.92 A |
INO | 2.83 ± 0.43 | 4.02 ± 0.54 | 4.75 ± 1.09 | 3.87 A | 5.32 ± 0.50 | 5.41 ± 0.56 | 5.77 ± 0.42 | 5.50 A |
Avcv | 3.15 a | 3.67 ab | 4.49 b | 5.16 a | 5.53 a | 6.44 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łata, B.; Łaźny, R.; Przybyłko, S.; Wrona, D. Malus Antioxidant Metabolism Following Bacterial–Fungal Inoculation in Organic Farming: From Root to Fruit. Appl. Sci. 2021, 11, 9466. https://doi.org/10.3390/app11209466
Łata B, Łaźny R, Przybyłko S, Wrona D. Malus Antioxidant Metabolism Following Bacterial–Fungal Inoculation in Organic Farming: From Root to Fruit. Applied Sciences. 2021; 11(20):9466. https://doi.org/10.3390/app11209466
Chicago/Turabian StyleŁata, Barbara, Radosław Łaźny, Sebastian Przybyłko, and Dariusz Wrona. 2021. "Malus Antioxidant Metabolism Following Bacterial–Fungal Inoculation in Organic Farming: From Root to Fruit" Applied Sciences 11, no. 20: 9466. https://doi.org/10.3390/app11209466
APA StyleŁata, B., Łaźny, R., Przybyłko, S., & Wrona, D. (2021). Malus Antioxidant Metabolism Following Bacterial–Fungal Inoculation in Organic Farming: From Root to Fruit. Applied Sciences, 11(20), 9466. https://doi.org/10.3390/app11209466