Analysis of the Major Probiotics in Healthy Women’s Breast Milk by Realtime PCR. Factors Affecting the Presence of Those Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Milk Samples
2.2. Genomic DNA Extraction
2.3. Realtime PCR
2.4. Questionnaire
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, A.L.; Sáenz de Pipaón, M.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Lonnerdal, B. Bioactive proteins in human milk: Health, nutrition, and implications for infant formulas. J. Pediatrics 2016, 173, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, R.; Langa, S.; Reviriego, C.; Jiménez, E.; Marín, M.; Xaus, J.; Fermandez, L.; Rodríguez, J.M. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 2013, 143, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Kansandee, K.; Moonmangmee, D.; Moonmangmee, S.; Itsaranuwata, P. Characterization and Bifidobacterium sp. growth stimulation of exopolysaccharide produced by Enterococcus faecalis EJRM152 isolated from human breast milk. Carbohyd. Polym. 2010, 206, 102–109. [Google Scholar] [CrossRef]
- Olivares, M.; Díaz-Ropero, M.P.; Martín, R.; Rodríguez, J.M.; Xaus, J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006, 101, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, M.P.; Saris, P.E.J. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 2003, 95, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongaram, T.; Hoeflinger, J.L.; Chow, J.; Miller, M.J. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J. Dairy Sci. 2017, 100, 7825–7833. [Google Scholar] [CrossRef] [Green Version]
- Rajoka, M.S.R.; Mehwish, H.M.; Siddiq, M.; Haobin, Z.; Zhu, J.; Yan, L.; Shao, D.; Xu, X.; ShI, J. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT 2017, 84, 271–280. [Google Scholar] [CrossRef]
- Bachour, P.; Yafawi, R.; Jaber, F.; Choueiri, E.; Abdel-Razzak, Z. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin A concentrations of human milk. Breastfeed. Med. 2012, 7, 179–188. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast Milk Lipids and Fatty Acids in Regulating Neonatal Intestinal Development and Protecting against Intestinal Injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Luk, B.; Veeraragavan, S.; Engevik, M.; Balderas, M.; Major, A.; Runge, J.; Luna, R.A.; Versalovic, J. Postnatal colonization with human “infant-type” Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE 2018, 13, e0196510. [Google Scholar] [CrossRef] [PubMed]
- Requena, T.; Burton, J.; Matsuki, T.; Munro, K.; Simon, M.A.; Tanaka, R.; Watanabe, K.; Tannock, G.W. Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl. Environ. Microbiol. 2002, 68, 2420–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haarman, M.; Knol, J. Quantitative Real-Time PCR Assays To Identify and Quantify Fecal Bifidobacterium Species in Infants Receiving a Prebiotic Infant Formula. Appl. Environ. Microbiol. 2005, 71, 2318–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delroisse, J.M.; Boulvin, A.L.; Parmentier, I.; Dubois Dauphin, R.; Vendenbol, M.; Portetelle, D. Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol. Res. 2008, 163, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Heilig, H.G.H.J.; Zoetendal, E.G.; Vaughan, E.E.; Marteau, P.; Akkermans, A.D.L.; de Vos, W.M. Molecular Diversity of Lactobacillus spp. and other Lactic Acid Bacteria in the human intestine as determined by specific smplification of 16S Ribosomal DNA. Appl. Environ. Microbiol. 2002, 68, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Arici, M.; Bilgin, B.; Sagdic, O.; Ozdemir, C. Some characteristics of Lactobacillus isolates from infant-faeces. Food Microbiol. 2004, 21, 19–24. [Google Scholar] [CrossRef]
- Rodriguez, J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation. Adv. Nutr. 2014, 5, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schutte, U.M.E.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011, 6, e21313. [Google Scholar] [CrossRef] [Green Version]
- Jost, T.; Lacroix, C.; Braegger, C.P.; Rochat, F.; Chassard, C. Vertical motherneonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014, 16, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.; Martin, V.; Jimenez, E.; Mader, I.; Rodrıguez, J.M.; Fernandez, L. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors. J. Pediatric Gastroenterol. Nutr. 2014, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- Tušar, T.; Žerdoner, K.; Bogovič Matijašič, B.; Paveljšek, D.; Benedik, E.; Brantanič, B.; Fidler, N.; Rogelj, I. Cultivable bacteria from milk from Slovenian breastfeeding mothers. Food Technol. Biotechnol. 2014, 52, 242–247. [Google Scholar]
- González, R.; Maldonado, A.; Martín, V.; Mandomando, I.; Fumadó, V.; Metzner, K.J.; Sacoor, C.; Fernández, L.; Macete, E.; Alonso, P.L.; et al. Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PLoS ONE 2013, 8, e80299. [Google Scholar] [CrossRef] [Green Version]
- Li, S.W.; Watanabe, K.; Hsu, C.C.; Chao, S.H.; Yang, Z.H.; Lin, Y.J.; Chen, C.C.; Cao, Y.M.; Huang, H.C.; Chang, C.H.; et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and Mainland China. Front. Microbiol. 2017, 8, 965. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Toscano, M.; De Grandi, R.; Grossi, E.; Padovani, E.M.; Peroni, D.G. Micro-biota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME 2017, 11, 875–884. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.; McGuire, M.A. Human milk: Mother nature’s prototypical probiotic food? Adv. Nutr. 2015, 6, 112–123. [Google Scholar] [CrossRef]
- Aaltonen, J.; Ojala, T.; Laitinen, K.; Poussa, T.; Ozanne, S.; Isolauri, E. Impact of maternal diet during pregnancy and breastfeeding on infant metabolic programming: A prospective randomized controlled study. Eur. J. Clin. Nutr. 2011, 65, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toscano, M.; De Grandi, R.; Grossi, E.; Drago, L. Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review. Front. Microbiol. 2017, 8, 2100. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 2019, 25, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Avershina, E.; Angell, I.L.; Simpson, M.; Storrø, O.; Øien, T.; Johnsen, R.; Rudi, K. Low maternal microbiota sharing across gut, breast milk and vagina, as revealed by 16S rRNA gene and reduced metagenomic sequencing. Genes 2018, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damaceno, Q.S.; Souza, J.P.; Nicoli, J.R.; Paula, R.L.; Assis, G.B.; Figueiredo, H.C.; Azavedo, V.; Martins, F.S. Evaluation of potential probiotics isolated from human milk and colostrum. Probiot. Antimicrob. Prot. 2017, 9, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Solis, G.; de Los Reyes-Gavilan, C.G.; Fernandez, N.; Margolles, A.; Gueimonde, M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010, 16, 307–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Microorganism | Primer | Sequence (5′ to 3′) | Reference |
---|---|---|---|
Bifidobacterium | Bifid-F Bifid-R | CTC CTG GAA ACG GGT GG GGT GTT CTT CCC GAT ATC TAC A | Requena et al., 2002 |
Lactobacillus | Lab 159 Lab 677 | GGA AAC AGT TGC TAA TAC CG CACCGC TAC ACA TGG AG | Heiling et al., 2014 |
Bifidobacterium bifidum | B.biFIdum FWD B.biFIdum REV | CCA CAT GAT CGC ATG TGA TTG CCG AAG GCT TGC TCC CAA A | Haarman et al., 2005 |
Bifidobacterium longum | B. longum FWD B. longum REV | TTC CAG TTG ATC GCA TGG TC GGG AAG CCG TAT CTC TAC GA | Haarman et al., 2005 |
Type of Breast Milk | Number of Samples Analyzed (n) | Positive for Bifidobacterium | Positive for Lactobacillus | Positive Samples for either Bifidobacterium or Lactobacillus |
---|---|---|---|---|
colostrum | 26 | 16 (61.5%) | 12 (46.2%) | 20 (76.9%) |
mature | 74 | 28 (37.8%) | 18 (24.3%) | 36 (48.6%) |
total samples | 100 | 44 (44.0%) | 30 (30.0%) | 56 (56.0%) |
Type of Breast Milk | Number of Samples Analyzed (n) | Positive for B. longum | Positive for B. bifidum |
---|---|---|---|
colostrum | 16 | 6 (37.5%) | 6 (37.5%) |
mature | 28 | 4 (14.3%) | 8 (28.6%) |
total samples | 44 | 10 (22.7%) | 14 (31.8%) |
Data | Number of Women | Total Positive Samples |
---|---|---|
Age | ||
18–24 | 7 | 7 (100%) |
25–29 | 15 | 15 (100%) |
30–34 | 35 | 23 (65.7%) |
35–39 | 23 | 6 (26.1%) |
40–44 | 15 | 5 (33.3%) |
≥45 | 5 | 0 |
BMI | ||
<20 | 15 | 13 (86.7%) |
20–25 | 40 | 32 (80%) |
25–30 | 35 | 8 (22.9%) |
>30 | 10 | 3 (30%) |
Place of residence | ||
Urban areas | 65 | 22 (33.8%) |
Rural areas | 35 | 34 (97.1%) |
Probiotics Supplements | ||
Yes | 40 | 24 (60%) |
No | 60 | 32 (53.3%) |
Dairy Products | ||
Yogurt | 70 | 45 (64.3%) |
Dairy products enriched with probiotics | 30 | 11 (36.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolopoulou, G.; Tsironi, T.; Halvatsiotis, P.; Petropoulou, E.; Genaris, N.; Vougiouklaki, D.; Antonopoulos, D.; Thomas, A.; Tsilia, A.; Batrinou, A.; et al. Analysis of the Major Probiotics in Healthy Women’s Breast Milk by Realtime PCR. Factors Affecting the Presence of Those Bacteria. Appl. Sci. 2021, 11, 9400. https://doi.org/10.3390/app11209400
Nikolopoulou G, Tsironi T, Halvatsiotis P, Petropoulou E, Genaris N, Vougiouklaki D, Antonopoulos D, Thomas A, Tsilia A, Batrinou A, et al. Analysis of the Major Probiotics in Healthy Women’s Breast Milk by Realtime PCR. Factors Affecting the Presence of Those Bacteria. Applied Sciences. 2021; 11(20):9400. https://doi.org/10.3390/app11209400
Chicago/Turabian StyleNikolopoulou, Georgia, Theofania Tsironi, Panagiotis Halvatsiotis, Ekaterini Petropoulou, Nikolaos Genaris, Despina Vougiouklaki, Dionyssios Antonopoulos, Apollon Thomas, Anastasia Tsilia, Anthimia Batrinou, and et al. 2021. "Analysis of the Major Probiotics in Healthy Women’s Breast Milk by Realtime PCR. Factors Affecting the Presence of Those Bacteria" Applied Sciences 11, no. 20: 9400. https://doi.org/10.3390/app11209400