Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Specimen Production and Maintenance Conditions
2.3. Drying–Wetting Cycle Design
2.4. Testing Procedure
2.4.1. Flexural Strength
2.4.2. Relative Dynamic Elastic Modulus
2.4.3. Mass Change
2.4.4. Microstructural Analysis
3. Results and Discussion
3.1. Visual Inspection
3.2. Flexural Strength of Concrete
3.3. Relative Dynamic Elastic Modulus
3.4. Mass Change
3.5. Microstructural Analysis by SEM
4. Conclusions
- (1)
- The changes in concrete performance with different dry–wet cycles were essentially consistent. Within a certain range, the erosion of concrete became more apparent upon prolonging the dry–wet cycles. The relative flexural strength and relative dynamic modulus of the T3, T7, T14, and T21 specimens peaked at 28, 12, 6, and 4 dry–wet cycles, respectively. After 252 days of sulfate dry–wet cycles, the flexural strength of the single-cycle specimens decreased by 1.05%, 2.7%, 4.2%, and 5.6% on average, respectively.
- (2)
- Regarding the microstructure, increasing the dry–wet cycle period gradually increased the depth of influence of the sulfate attack inside the concrete, along with the number and volumes of erosion products at a given depth. These results well validate the variation law of macroscopic performance. However, for a given dry–wet cycle period, the content of erosion products gradually decreased with increasing depth.
- (3)
- The excessive extension of the dry–wet cycle period has little effect on the deterioration of concrete’s performance; thus, such extension is not advised. According to the test results, the strengths and RDEMs of T14 and T21 showed similar variations. The microstructural analysis illustrated that the number and volume of attack products inside the specimen showed trends of decreasing with increasing dry–wet cycle periods. Therefore, based on the strength and depth of single-cycle erosion, it is advisable to set the cycle period to 7–14 days when testing sulfate dry–wet attack on concrete under natural dry conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, T.L.; Wang, X.F.; Li, D.F.; Li, D.W.; Han, N.X.; Xing, F. Damage and degradation mechanism for single intermittent cracked mortar specimens under a combination of chemical solutions and dry-wet cycles. Constr. Build. Mater. 2019, 213, 567–581. [Google Scholar]
- He, R.; Zheng, S.N.; Vincent, J.L.; Wang, Z.D.; Fang, J.H.; Shao, Y. Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and Dry-Wet cycles. Constr. Build. Mater. 2020, 255. [Google Scholar] [CrossRef]
- Ma, H.Y.; Gong, W.; Yu, H.F.; Sun, W. Durability of concrete subjected to dry-wet cycles in various types of salt lake brines. Constr. Build. Mater. 2018, 193, 286–294. [Google Scholar]
- Nehdi, M.L.; Suleiman, A.R.; Soliman, A.M. Investigation of concrete exposed to dual sulfate attack. Cem. Concr. Res. 2014, 64, 42–53. [Google Scholar]
- Suleiman, A.R.; Soliman, A.M.; Nehdi, M.L. Effect of surface treatment on durability of concrete exposed to physical sulfate attack. Constr. Build. Mater. 2014, 73, 674–681. [Google Scholar]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.M.; Roussel, N.; Divet, L.; de Lacaillerie, J.B.D. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar]
- Wang, K.; Guo, J.J.; Wu, H.; Yang, L. Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack. Constr. Build. Mater. 2020, 263. [Google Scholar] [CrossRef]
- Liao, K.X.; Zhang, Y.P.; Zhang, W.P.; Wang, Y.; Zhang, R.L. Modeling constitutive relationship of sulfate-attacked concrete. Constr. Build. Mater. 2020, 260. [Google Scholar] [CrossRef]
- Chen, H.C.; Huang, H.L.; Qian, C.X. Study on the deterioration process of cement-based materials under sulfate attack and drying–wetting cycles. Struct. Concr. 2018, 19, 1225–1234. [Google Scholar]
- Sahmaran, M.; Erdem, T.K.; Yaman, I.O. Sulfate resistance of plain and blended cements exposed to wetting-drying and heating-cooling environments. Constr. Build. Mater. 2006, 21, 1771–1778. [Google Scholar]
- Guo, J.J.; Yang, M.; Chen, H.L.; Han, J.H. Experimental study on fracture properties of modified concrete attacked by sulfate corrosion under dry-wet circulation. J. Hydraul. Eng. ASCE 2018, 49, 419–427. [Google Scholar]
- Ganjian, E.; Pouya, H.S. The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Constr. Build. Mater. 2008, 23, 644–652. [Google Scholar]
- Yang, K.H.; Lim, H.S.; Kwon, S.J. Effective Bio-Slime Coating Technique for Concrete Surfaces under Sulfate Attack. Materials 2020, 13, 1512. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; You, Z.P.; Diab, A.; Liu, Z.Z.; Zhang, C.; Guo, S.C. External sulfate attack on concrete under combined effects of flexural fatigue loading and drying-wetting cycles. Constr. Build. Mater. 2020, 249. [Google Scholar] [CrossRef]
- Pang, C.M.; Xu, J.; Wang, J.; Wang, L.; Qin, H.G.; Sun, W. Investigation of the Process and Regime of Drying and Wetting of Concrete. J. Build. Mater. 2013, 16, 315–320. [Google Scholar]
- Sutrisno, W.; Suprobo, P.; Wahyuni, E.; Iranata, D. Experimental Test of Chloride Penetration in Reinforced Concrete Subjected to Wetting and Drying Cycle. Appl. Mech. Mater. 2016, 851, 846–851. [Google Scholar]
- Sobhan, K.; Gonzalez, L.; Reddy, D.V. Durability of a pavement foundation made from recycled aggregate concrete subjected to cyclic wet dry exposure and fatigue loading. Mater. Struct. 2016, 49, 2271–2284. [Google Scholar]
- Liu, R.D.; Zhang, J.W.; Liu, S.W.; Li, K.; Zhang, C.Y. Effect of sulfate dry-wet circulation environment on concrete performance. Concrete 2018, 4, 16. [Google Scholar]
- Cheng, S.K.; Shui, Z.H.; Gao, X.; Lu, J.X.; Sun, T.; Yu, R. Degradation progress of Portland cement mortar under the coupled effects of multiple corrosive ions and drying-wetting cycles. Cem. Concr. Compos. 2020, 111. [Google Scholar] [CrossRef]
- Liu, Q.D.; Liu, R.G.; Jiang, H.; Teng, B.; Lu, C.H. Artificial climate simulation acceleration test design of concrete structure in wet-dry cycling zone. Concrete 2018, 11, 55–57. [Google Scholar]
- Chen, Y.; Liu, P.; Zhang, R.L.; Hu, Y.; Yu, Z.W. Chemical kinetic analysis of the activation energy of diffusion coefficient of sulfate ion in concrete. Chem. Phys. Lett. 2020, 753. [Google Scholar] [CrossRef]
- Alyami, M.H.; Alrashidi, R.S.; Mosavi, H.; Almarshoud, M.A.; Riding, K.A. Potential accelerated test methods for physical sulfate attack on concrete. Constr. Build. Mater. 2019, 229. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Z.; Dong, Y.; Diao, J.K.; Zhang, G.Y.; Chen, C.; Wu, D.X. MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete. Appl. Sci. 2019, 9, 5091. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, J.Y.; Huang, Z.Y.; Zhu, J.H.; Liu, W.; Zhang, W. Effect of Fly Ash as Cement Replacement on Chloride Diffusion, Chloride Binding Capacity, and Micro-Properties of Concrete in a Water Soaking Environment. Appl. Sci. 2020, 10, 6271. [Google Scholar] [CrossRef]
- GB/T 50082-2019. Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete; Chinese Standard Institution Press: Beijing, China, 2019. [Google Scholar]
- GB/T 50082-2009. Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete; Chinese Standard Institution Press: Beijing, China, 2009. [Google Scholar]
- ASTM C1012. Standard Test Method for Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Scherer, G.W. Stress from crystallization of salt. Cem. Concr. Res. 2004, 34, 1613–1624. [Google Scholar] [CrossRef]
- Guo, J.J.; Wang, K.; Guo, T.; Yang, Z.Y.; Zhang, P. Effect of Dry-Wet Ratio on Properties of Concrete under Sulfate Attack. Materials 2019, 12, 2755. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.K.; Shui, Z.H.; Gao, X.; Yu, R.; Sun, T.; Guo, C.; Huang, Y. Degradation mechanisms of Portland cement mortar under seawater attack and drying-wetting cycles. Constr. Build. Mater. 2019, 230. [Google Scholar] [CrossRef]
- Zhang, H.; She, W. A Modulus Variation Model of Concrete under External Sulfate Attack: New Perspective from Statistical Evolution of Microcracks. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 1465–1471. [Google Scholar] [CrossRef]
- Golewski, G.L. Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Constr. Build. Mater. 2019, 213, 142–155. [Google Scholar] [CrossRef]
Composition | Cement | Fly Ash |
---|---|---|
Chemical (%) | ||
MgO | 3.34 | 1.5 |
SiO2 | 31.43 | 58 |
CaO | 41.28 | 2.8 |
Al2O3 | 12.43 | 30 |
Fe2O3 | 3.34 | 4.3 |
K2O | 0.80 | 1.36 |
SO3 | 3.22 | 1.22 |
Na2O | 0.43 | 0 |
LOI | 1.09 | 0.82 |
C2S | 18.79 | - |
C3S | 43.38 | - |
C3A | 6.00 | - |
C4AF | 8.55 | - |
Physical properties | ||
Spec. surf. area (m2/g) | 332 | 287 |
Density (kg/m3) | 3.06 | 2.34 |
Compressive strength at 3/28 days (MPa) | 26.6/54.5 | - |
Flexural strength at 3/28 days (MPa) | 5.42/8.74 | - |
Time of initial/final setting (min) | 90/300 | - |
W/B | Sand Ratio (%) | The Amounts of Different Materials (kg/m3) | ||||
---|---|---|---|---|---|---|
Water | Cement | Fly Ash | Sand | Aggregate | ||
0.54 | 36 | 195 | 289 | 72 | 664 | 1180 |
Code | Dry–Wet Cycle Period (Days) | Dry–Wet Ratio |
---|---|---|
T3 | 3 | 3:1 |
T7 | 7 | |
T14 | 14 | |
T21 | 21 |
Cycles | T3 | Average Value | Relative Value | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
0 | 5.18 | 5.16 | 4.91 | 5.08 | 1.00 |
7 | 5.09 | 4.80 | 4.99 | 4.96 | 0.98 |
14 | 4.95 | 4.97 | 5.24 | 5.05 | 0.99 |
21 | 4.92 | 6.88 | 6.81 | 6.84 | 1.35 |
28 | 8.45 | 7.61 | 7.20 | 7.41 | 1.46 |
35 | 10.03 | 7.15 | 7.50 | 7.32 | 1.44 |
42 | 6.25 | 6.36 | 6.69 | 6.43 | 1.27 |
49 | 6.67 | 6.61 | 6.58 | 6.62 | 1.30 |
56 | 8.66 | 5.76 | 5.95 | 5.86 | 1.15 |
63 | 5.42 | 5.48 | 5.04 | 5.31 | 1.05 |
70 | 5.01 | 4.66 | 4.87 | 4.85 | 0.95 |
77 | 4.13 | 4.30 | 4.26 | 4.23 | 0.83 |
T7 | |||||
1 | 2 | 3 | |||
0 | 5.18 | 5.16 | 4.91 | 5.08 | 1.00 |
3 | 4.36 | 4.99 | 4.64 | 4.66 | 0.92 |
6 | 6.49 | 5.34 | 5.36 | 5.35 | 1.05 |
9 | 4.73 | 6.72 | 6.43 | 6.57 | 1.29 |
12 | 6.87 | 7.09 | 7.36 | 7.11 | 1.40 |
15 | 6.46 | 7.49 | 7.28 | 7.08 | 1.39 |
18 | 6.53 | 6.73 | 6.66 | 6.64 | 1.31 |
21 | 6.64 | 6.68 | 7.02 | 6.78 | 1.33 |
24 | 6.25 | 6.08 | 6.22 | 6.18 | 1.22 |
27 | 5.37 | 5.33 | 5.39 | 5.37 | 1.06 |
30 | 4.85 | 4.99 | 4.96 | 4.93 | 0.97 |
33 | 4.38 | 4.01 | 4.19 | 4.19 | 0.82 |
T14 | |||||
1 | 2 | 3 | |||
0 | 5.18 | 5.16 | 4.91 | 5.08 | 1.00 |
2 | 5.02 | 4.99 | 4.84 | 4.95 | 0.97 |
4 | 5.87 | 5.76 | 6.33 | 5.99 | 1.18 |
6 | 7.24 | 7.00 | 6.15 | 6.80 | 1.34 |
8 | 7.49 | 6.07 | 6.25 | 6.16 | 1.21 |
10 | 5.24 | 6.11 | 5.50 | 5.62 | 1.11 |
12 | 6.06 | 6.07 | 6.09 | 6.07 | 1.19 |
14 | 6.07 | 6.02 | 5.04 | 5.71 | 1.12 |
16 | 5.13 | 4.70 | 5.05 | 4.88 | 0.98 |
18 | 4.03 | 4.32 | 4.47 | 4.27 | 0.84 |
T21 | |||||
1 | 2 | 3 | |||
0 | 5.18 | 5.16 | 4.91 | 5.08 | 1.00 |
1 | 5.24 | 4.99 | 5.79 | 5.34 | 1.05 |
2 | 8.18 | 5.56 | 5.44 | 5.50 | 1.08 |
3 | 6.22 | 6.44 | 6.40 | 6.36 | 1.25 |
4 | 5.02 | 6.40 | 7.25 | 6.82 | 1.34 |
5 | 6.52 | 6.25 | 7.20 | 6.66 | 1.31 |
6 | 6.25 | 5.88 | 5.88 | 6.00 | 1.18 |
7 | 5.66 | 5.96 | 5.92 | 5.85 | 1.15 |
8 | 9.75 | 6.12 | 6.32 | 6.22 | 1.22 |
9 | 6.00 | 6.05 | 6.16 | 6.07 | 1.19 |
10 | 5.35 | 6.07 | 5.62 | 5.68 | 1.12 |
11 | 4.82 | 4.95 | 4.76 | 4.84 | 0.95 |
Cycles | T3 | Average Value | Relative Value | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
0 | 43.8 | 43.2 | 43.8 | 43.6 | 0.00 |
7 | 43.4 | 42.9 | 43.3 | 43.2 | −0.92 |
14 | 45.1 | 45.5 | 46.2 | 45.6 | 4.59 |
21 | 47.6 | 45.9 | 47.7 | 47.1 | 7.95 |
28 | 47.6 | 47.6 | 47.4 | 47.5 | 9.02 |
35 | 47.4 | 46.4 | 46.8 | 46.9 | 7.49 |
42 | 46.5 | 45.6 | 45.9 | 46.0 | 5.50 |
49 | 46.4 | 46.1 | 46.4 | 46.3 | 6.19 |
56 | 46.4 | 45.0 | 46.1 | 45.8 | 5.12 |
63 | 44.8 | 44.5 | 44.9 | 44.7 | 2.60 |
70 | 43.4 | 43.0 | 42.8 | 43.1 | −1.22 |
77 | 40.8 | 41.2 | 40.8 | 40.9 | −6.12 |
T7 | |||||
1 | 2 | 3 | |||
0 | 44.7 | 44.3 | 44.5 | 44.50 | 0.00 |
3 | 43.7 | 44.3 | 44.6 | 44.20 | −0.67 |
6 | 45.6 | 46.0 | 46.3 | 45.97 | 3.30 |
9 | 47.6 | 47.6 | 46.7 | 47.30 | 6.29 |
12 | 47.4 | 46.8 | 48.8 | 47.67 | 7.12 |
15 | 46.4 | 47.0 | 47.8 | 47.07 | 5.77 |
18 | 45.9 | 46.4 | 47.8 | 46.70 | 4.94 |
21 | 47.3 | 47.5 | 47.1 | 47.30 | 6.29 |
24 | 46.3 | 46.5 | 46.5 | 46.43 | 4.34 |
27 | 44.1 | 45.0 | 46.1 | 45.07 | 1.27 |
30 | 44.0 | 43.8 | 43.9 | 43.90 | −1.35 |
33 | 41.2 | 41.5 | 41.3 | 41.33 | −7.12 |
T14 | |||||
1 | 2 | 3 | |||
0 | 44.0 | 44.0 | 44.2 | 44.07 | 0.00 |
2 | 42.5 | 43.6 | 44.5 | 43.53 | −1.22 |
4 | 45.4 | 45.5 | 45.3 | 45.40 | 3.02 |
6 | 46.3 | 46.5 | 46.2 | 46.33 | 5.14 |
8 | 44.9 | 45.2 | 45.4 | 45.17 | 2.49 |
10 | 45.2 | 45.5 | 45.7 | 45.47 | 3.17 |
12 | 44.3 | 45.4 | 46.2 | 45.30 | 2.79 |
14 | 43.9 | 45.0 | 45.8 | 44.90 | 1.88 |
16 | 43.0 | 43.8 | 44.4 | 43.73 | −0.76 |
18 | 41.3 | 41.6 | 42.4 | 41.77 | −5.23 |
T21 | |||||
1 | 2 | 3 | |||
0 | 42.9 | 42.3 | 42.9 | 42.70 | 0.00 |
1 | 43.1 | 41.0 | 43.1 | 42.40 | −0.70 |
2 | 44.1 | 42.0 | 42.8 | 42.97 | 0.62 |
3 | 44.5 | 43.1 | 44.6 | 44.07 | 3.20 |
4 | 44.4 | 43.9 | 45.3 | 44.53 | 4.29 |
5 | 43.6 | 44.3 | 45.1 | 44.33 | 3.83 |
6 | 44.0 | 42.9 | 44.2 | 43.70 | 2.34 |
7 | 43.6 | 43.4 | 43.7 | 43.57 | 2.03 |
8 | 44.2 | 44.0 | 44.3 | 44.17 | 3.43 |
9 | 44.0 | 43.8 | 43.9 | 43.90 | 2.81 |
10 | 43.1 | 42.1 | 42.3 | 42.50 | −0.47 |
11 | 41.5 | 40.3 | 40.2 | 40.67 | −4.76 |
Cycles | T3 | Average Value | Relative Value | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
0 | 9.690 | 9.680 | 9.690 | 9.687 | 0.00 |
7 | 9.703 | 9.686 | 9.698 | 9.696 | 0.09 |
14 | 9.717 | 9.690 | 9.710 | 9.706 | 0.20 |
21 | 9.723 | 9.695 | 9.719 | 9.712 | 0.26 |
28 | 9.725 | 9.700 | 9.721 | 9.715 | 0.29 |
35 | 9.721 | 9.694 | 9.715 | 9.710 | 0.24 |
42 | 9.707 | 9.680 | 9.703 | 9.697 | 0.10 |
49 | 9.696 | 9.672 | 9.691 | 9.686 | −0.01 |
56 | 9.688 | 9.664 | 9.679 | 9.677 | −0.10 |
63 | 9.680 | 9.656 | 9.668 | 9.668 | −0.20 |
70 | 9.668 | 9.645 | 9.655 | 9.656 | −0.32 |
77 | 9.660 | 9.639 | 9.648 | 9.649 | −0.39 |
T7 | |||||
1 | 2 | 3 | |||
0 | 9.753 | 9.751 | 9.795 | 9.766 | 0.00 |
3 | 9.770 | 9.750 | 9.800 | 9.773 | 0.07 |
6 | 9.763 | 9.762 | 9.808 | 9.778 | 0.12 |
9 | 9.768 | 9.769 | 9.810 | 9.782 | 0.16 |
12 | 9.771 | 9.768 | 9.813 | 9.784 | 0.18 |
15 | 9.766 | 9.762 | 9.807 | 9.778 | 0.12 |
18 | 9.761 | 9.759 | 9.805 | 9.775 | 0.09 |
21 | 9.755 | 9.752 | 9.798 | 9.768 | 0.02 |
24 | 9.748 | 9.743 | 9.784 | 9.758 | −0.08 |
27 | 9.733 | 9.729 | 9.773 | 9.745 | −0.22 |
30 | 9.718 | 9.717 | 9.755 | 9.730 | −0.37 |
33 | 9.712 | 9.703 | 9.740 | 9.718 | −0.49 |
T14 | |||||
1 | 2 | 3 | |||
0 | 9.803 | 9.806 | 9.700 | 9.770 | 0.00 |
2 | 9.821 | 9.828 | 9.717 | 9.789 | 0.19 |
4 | 9.836 | 9.836 | 9.736 | 9.803 | 0.34 |
6 | 9.845 | 9.846 | 9.738 | 9.810 | 0.41 |
8 | 9.826 | 9.827 | 9.724 | 9.792 | 0.23 |
10 | 9.820 | 9.822 | 9.716 | 9.786 | 0.16 |
12 | 9.811 | 9.813 | 9.706 | 9.777 | 0.07 |
14 | 9.802 | 9.803 | 9.695 | 9.767 | −0.03 |
16 | 9.789 | 9.790 | 9.696 | 9.758 | −0.12 |
18 | 9.769 | 9.775 | 9.673 | 9.739 | −0.32 |
T21 | |||||
1 | 2 | 3 | |||
0 | 9.720 | 9.720 | 9.720 | 9.720 | 0.00 |
1 | 9.710 | 9.710 | 9.790 | 9.737 | 0.17 |
2 | 9.733 | 9.735 | 9.812 | 9.760 | 0.41 |
3 | 9.739 | 9.743 | 9.820 | 9.767 | 0.48 |
4 | 9.743 | 9.744 | 9.822 | 9.770 | 0.51 |
5 | 9.734 | 9.738 | 9.813 | 9.762 | 0.43 |
6 | 9.727 | 9.726 | 9.805 | 9.753 | 0.34 |
7 | 9.719 | 9.722 | 9.801 | 9.747 | 0.27 |
8 | 9.712 | 9.714 | 9.790 | 9.739 | 0.20 |
9 | 9.689 | 9.691 | 9.763 | 9.714 | −0.06 |
10 | 9.676 | 9.675 | 9.753 | 9.701 | −0.20 |
11 | 9.662 | 9.666 | 9.747 | 9.692 | −0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.-J.; Liu, P.-Q.; Wu, C.-L.; Wang, K. Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack. Appl. Sci. 2021, 11, 888. https://doi.org/10.3390/app11020888
Guo J-J, Liu P-Q, Wu C-L, Wang K. Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack. Applied Sciences. 2021; 11(2):888. https://doi.org/10.3390/app11020888
Chicago/Turabian StyleGuo, Jin-Jun, Peng-Qiang Liu, Cun-Liang Wu, and Kun Wang. 2021. "Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack" Applied Sciences 11, no. 2: 888. https://doi.org/10.3390/app11020888
APA StyleGuo, J.-J., Liu, P.-Q., Wu, C.-L., & Wang, K. (2021). Effect of Dry–Wet Cycle Periods on Properties of Concrete under Sulfate Attack. Applied Sciences, 11(2), 888. https://doi.org/10.3390/app11020888