Surface Properties of Spray-Assisted Layer-By-Layer ElectroStatic Self-Assembly Treated Wooden Take-Off Board
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Chitosan/Sodium Phytate/Al(OH)3 Coatings on the Wood Surface
2.3. Characterization
2.3.1. SEM
2.3.2. UV Light Test
2.3.3. Wettability Test
2.3.4. Combustion Tests
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starzak, M.; Makaruk, H.; Sadowski, J. Step Length Adjustment in the Long Jump with and without Take-off Board in non-Long Jumpers. JKES 2015, 70, 19–25. [Google Scholar]
- Evans, P.D. Weathering of Wood and Wood Composites. In Handbook of Wood Chemistry and Wood Composites, 2nd ed.; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 151–216. [Google Scholar]
- Feist, W.C. Outdoor Wood Weathering and Protection. In Archaeological Wood Properties, Chemistry, and Preservation; Rowell, R.M., Barbour, R.J., Eds.; American Chemical Society: Washington, DC, USA, 1990; pp. 263–298. [Google Scholar]
- Henriques, D.F.; Azevedo, A.C.B. Outdoor Wood Weathering and Protection. In Proceeding of the 7th Rehabend Congress—Construction Pathology, Rehabilitation Technology and Heritage Management, Caceres, Spain, 15–18 May 2018. [Google Scholar]
- Dong, H.; Bahmani, M.; Rahimi, S.; Humar, M. Influence of Copper and Biopolymer/Saqez Resin on the Properties of Poplar Wood. Forests 2020, 11, 667. [Google Scholar] [CrossRef]
- Chu, D.; Mu, J.; Avramidis, S.; Rahimi, S.; Liu, S.; Lai, Z. Functionalized Surface Layer on Poplar Wood Fabricated by Fire Retardant and Thermal Densification. Part 1: Compression Recovery and Flammability. Forests 2019, 10, 955. [Google Scholar] [CrossRef] [Green Version]
- Rajkovic, V.J.; Bogner, A.; Radovan, D. The Efficiency of Various Treatments in Protecting Wood Surfaces against Weathering. Surf. Coat. Int. B Coat. Trans. 2004, 87, 15–19. [Google Scholar] [CrossRef]
- Evans, P.D.; Chowdhury, M.J.; Mathews, B.; Schmalzl, K.; Syer, S.; Kiguchi, M.; Kataoka, Y. Weathering and Surface Protection of Wood. In Handbook of Environmental Degradation of Materials; Kutz, M., Ed.; William Andrew: New York, NY, USA, 2005; pp. 277–297. [Google Scholar]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons Ltd.: West Sussex, UK, 2007. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. IFOREST 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Militz, H. Wood Modification Research in Europe. Holzforschung 2020, 74, 333. [Google Scholar] [CrossRef] [Green Version]
- Schaller, C.; Rogez, D. New Approaches in Wood Coating Stabilization. J. Coat. Technol. Res. 2007, 4, 401–409. [Google Scholar] [CrossRef]
- Windt, I.D.; Bulcke, J.V.; Wuijtens, I.; Coppens, H.; Acker, J.V. Outdoor Weathering Performance Parameters of Exterior Wood Coating Systems on Tropical Hardwood Substrates. Eur. J. Wood Wood Prod. 2014, 72, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.X.; Wang, L.; Qian, X.Y. Effect of Coating Process on Performance of Reversible Thermochromic Waterborne Coatings for Chinese Fir. Coatings 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Ariga, K.; Hill, J.P.; Ji, Q.M. Layer-by-Layer Assembly as A Versatile Bottom-up Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340. [Google Scholar]
- Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.M.; Yonamine, Y.; Wu, K.C.-W.; Hill, J.P. Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chem. Lett. 2014, 43, 36–68. [Google Scholar] [CrossRef]
- Wågberg, L.; Erlandsson, J. The Use of Layer-by-Layer Self-Assembly and Nanocellulose to Prepare Advanced Functional Materials. Adv. Mater. 2020, 2001474. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Lvov, Y.; Varahramyan, K. Conductive Wood Microfibres for Smart Paper through Layer-by-layer Nanocoating. Nanotechnology 2006, 17, 5319–5325. [Google Scholar] [CrossRef]
- Renneckar, S.; Zhou, Y. Nanoscale Coatings on Wood: Polyelectrolyte Adsorption and Layer-by-Layer Assembled Film Formation. ACS Appl. Mater. Interfaces 2009, 1, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Köklükaya, O.; Carosio, F.; Grunlan, J.C.; Wågberg, L. Flame-Retardant Paper from Wood Fibers Functionalized via Layer by-Layer Assembly. ACS Appl. Mater. Interfaces 2015, 7, 23750–23759. [Google Scholar] [CrossRef]
- Rao, X.; Liu, Y.; Fu, Y.; Liu, Y.; Yu, H. Formation and properties of polyelectrolytes/TiO2 composite coating on wood surfaces through layer-by-layer assembly method. Holzforschung 2016, 70, 361–367. [Google Scholar] [CrossRef]
- Tang, T.L.; Fu, Y.C. Formation of Chitosan/Sodium Phytate/Nano-Fe3O4 Magnetic Coatings on Wood Surfaces via Layer-by-Layer Self-Assembly. Coatings 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Fu, Y.C. Flame-Retardant Wood Composites Based on Immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO Coatings via Layer-by-Layer Self-Assembly. Coatings 2020, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Agriga, K.; Hill, J.P.; Lee, M.V.; Vinu, A.; Charvet, R.; Acharya, S. Challenges and Breakthroughs in Recent Research on Self-assembly. Sci. Technol. Adv. Mater. 2008, 9, 014109. [Google Scholar] [CrossRef] [Green Version]
- Sekar, S.; Lemaire, V.; Hu, H.; Decher, G.; Pauly, M. Anisotropic Optical and Conductive Properties of Oriented 1D-Nanoparticle Thin Films Made by Spray-assisted Self-assembly. Faraday Discuss. 2016, 191, 373. [Google Scholar] [CrossRef]
- Heo, J.W.; Choi, M.H.; Hong, J.K. Assisted Layer-by-Layer Self-Assembly of Graphene Oxide for Oxygen Barrier Properties. Sci. Rep. 2019, 9, 2754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, N.; Dov, N.E.; Ruiter, G.d.; Lahav, M.; Boom, M.E.v.d. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices. ACS Appl. Mater. Interfaces 2019, 11, 22858–22868. [Google Scholar] [CrossRef] [PubMed]
- Schlenoff, J.B.; Dubas, S.T.; Farhat, T. Sprayed Polyelectrolyte Multilayers. Langmuir 2000, 16, 9968–9969. [Google Scholar] [CrossRef]
- Shi, H.; Xue, L.; Gao, A.; Fu, Y.; Zhou, Q.; Zhu, L. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J. Membr. Sci. 2016, 498, 39–47. [Google Scholar] [CrossRef]
- Kai, C.; Catchmark, J.M. Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocoll. 2018, 80, 195–205. [Google Scholar]
- Nikolaeva, M.; Käerki, T. Influence of mineral fillers on the fire retardant properties of wood-polypropylene composites. Fire Mater. 2013, 37, 612–620. [Google Scholar] [CrossRef]
- Yan, W.; Wang, K.; Huang, W.; Wang, M.; Tian, Q. Synergistic effects of phenethyl-bridged dopo derivative with Al(OH)3 on flame retardancy for epoxy resins. Polym-Plast. Technol. Mat. 2019, 59, 1–12. [Google Scholar] [CrossRef]
- Guo, F.X.; Lei, L.I.; Zhou, Z.H.; Wang, Q.W.; Yi-Meng, H.U. Hydrophobic Modification of PP Membrane Coated by Al(OH)3 Colloids. In Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016), Shanghai, China, 12–13 November 2016; pp. 205–209. [Google Scholar]
- Wang, N.N.; Fu, Y.C.; Liu, Y.Z.; Yu, H.P. Synthesis of aluminum hydroxide thin coating and its influence on the thermomechanical and fire-resistant properties of wood. Holzforschung 2014, 68, 781–789. [Google Scholar] [CrossRef]
- Fu, Y.C.; Yu, H.P.; Sun, Q.F.; Li, G.; Liu, Y.X. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung 2012, 66, 739–744. [Google Scholar] [CrossRef]
Quantity | Mean | Std. Deviation | Variance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CH | 5 | 50.51 | 0.84 | 1.394 | ||||||
CH/SP | 5 | 31.98 | 1.14 | 2.486 | ||||||
CH/SP/Al(OH)3 | 5 | 13.51 | 0.57 | 0.157 | ||||||
ANOVA | ||||||||||
Sources | SS | df | MS | F | p-Value | F crit | ||||
Between groups | 1368.631 | 2 | 684.3157 | 508.4447 | 0.00016 | 9.552094 | ||||
Within groups | 4.0377 | 3 | 1.3459 | |||||||
Total | 1372.669 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Hou, S.; Guo, M.; Fu, Y. Surface Properties of Spray-Assisted Layer-By-Layer ElectroStatic Self-Assembly Treated Wooden Take-Off Board. Appl. Sci. 2021, 11, 836. https://doi.org/10.3390/app11020836
Wan Y, Hou S, Guo M, Fu Y. Surface Properties of Spray-Assisted Layer-By-Layer ElectroStatic Self-Assembly Treated Wooden Take-Off Board. Applied Sciences. 2021; 11(2):836. https://doi.org/10.3390/app11020836
Chicago/Turabian StyleWan, Yi, Sijie Hou, Mengyao Guo, and Yanchun Fu. 2021. "Surface Properties of Spray-Assisted Layer-By-Layer ElectroStatic Self-Assembly Treated Wooden Take-Off Board" Applied Sciences 11, no. 2: 836. https://doi.org/10.3390/app11020836
APA StyleWan, Y., Hou, S., Guo, M., & Fu, Y. (2021). Surface Properties of Spray-Assisted Layer-By-Layer ElectroStatic Self-Assembly Treated Wooden Take-Off Board. Applied Sciences, 11(2), 836. https://doi.org/10.3390/app11020836