Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of NPs
2.3. Morphological Analysis of NPs Using Scanning Electron Microscopy (SEM)
2.4. Determination of Peroxidase-Like Activity of NPs in Solution
2.5. Sensor Evaluation
2.5.1. Apparatus, Measurements, and Statistical Analysis
2.5.2. Immobilization of Metallic NPs onto Electrodes, Testing Their Electro- and PO-Like Activity
3. Results and Discussion
3.1. Obtaining and Characterizing the Best Peroxidase-Like Nanozymes
3.2. Development and Characterization of the NZs-Modified Electrodes
3.3. Characterization of the Most Effective Cu/CeS-Modified Electrode
3.4. Application of Cu/CeS as a PO-Mimetic in Amperometric Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-DCP | 2,4-Dichlorophenol |
ABTS | 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) |
CV | Cyclic voltammetry |
DBD | Diamond boron-doped |
gCuHCF | Hexacyanoferrate of coppers obtained via enzyme |
GCE | Glassy carbon electrode |
GE | Graphite electrode |
HNCs | Hollow nanocubes |
Imax | Maximal current response on tested analyte at substrate saturation |
KMapp | Apparent Michaelis–Menten constant |
LOD | Limit of detection |
LR | Linear range |
MOFs | Metal–Organic Frameworks |
NPs | Nanoparticles |
NZ | Nanozyme |
Me/CeS | Nanozyme obtained in the presence of Na2S in reaction mixture; where Me–Fe, Cu or Ag. |
OPD | o-Phenylenediamine |
PO | Natural horseradish peroxidase |
SAT | Standard addition test |
SEM-XRM | Scanning electron microscopy coupled with X-ray microanalysis |
TMB | 3,5,3′,5′-Tetramethylbenzidine |
References
- Dunford, H.B. Heme Peroxidases (University of Alberta); Wiley-VCH, John Wiley and Sons: New York, NY, USA, 1999; 507p, ISBN 0-471-24244-6. [Google Scholar]
- Veitch, N.C.; Smith, A.T. Horseradish peroxidase. Comput. Chem. 2000, 51, 107–162. [Google Scholar] [CrossRef]
- Plieth, C. Peroxide-Induced Liberation of Iron from Heme Switches Catalysis during Luminol Reaction and Causes Loss of Light and Heterodyning of Luminescence Kinetics. ACS Omega 2019, 4, 3268–3279. [Google Scholar] [CrossRef] [PubMed]
- Tatsuma, T.; Watanabe, T. Peroxidase model electrodes: Heme peptide modified electrodes as reagentless sensors for hydrogen peroxide. Anal. Chem. 1991, 63, 1580–1585. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Wollenberger, U. Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors 2020, 20, 3692. [Google Scholar] [CrossRef]
- Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 2019, 278, 130–144. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Gallay, P.; Eguílaz, M.; Rivas, G.A. Designing electrochemical interfaces based on nanohybrids of avidin functionalized-carbon nanotubes and ruthenium nanoparticles as peroxidase-like nanozyme with supramolecular recognition properties for site-specific anchoring of biotinylated residues. Biosens. Bioelectron. 2020, 148, 111764. [Google Scholar] [CrossRef]
- Sun, L.; Ding, Y.; Jiang, Y.; Liu, Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens. Actuators B Chem. 2017, 239, 848–856. [Google Scholar] [CrossRef]
- Cui, F.; Deng, Q.; Sun, L. Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 2015, 5, 98215–98221. [Google Scholar] [CrossRef]
- Komkova, M.A.; Pasquarelli, A.; Andreev, E.A.; Galushin, A.A.; Karyakin, A.A. Prussian Blue modified boron-doped dia-mond interfaces for advanced H2O2 electrochemical sensors. Electrochim. Acta 2020, 339, 135924. [Google Scholar] [CrossRef]
- Stasyuk, N.; Smutok, O.; Demkiv, O.M.; Prokopiv, T.; Gayda, G.Z.; Nisnevitch, M.; Gonchar, M.V. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors 2020, 20, 4509. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Hu, Y.; Wei, H. Nanozymes: Preparation and Characterization. In Nanotechnology for Electronics, Photonics, and Renewable Energy; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 79–101. [Google Scholar]
- Yue, Y.; Wei, H.; Guo, J.; Yang, Y. Ceria-based peroxidase-mimicking nanozyme with enhanced activity: A coordination chemistry strategy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125715. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Yan, X.; Fan, K. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chem. Rev. 2019, 119, 1806–1854. [Google Scholar] [CrossRef]
- Shen, J.; Shafiq, M.; Ma, M.; Chen, H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. Nanomaterials 2020, 10, 1177. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, H.; Zhao, S. Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. TrAC Trends Anal. Chem. 2020, 122, 115747. [Google Scholar] [CrossRef]
- Rauf, S.; Ali, N.; Tayyab, Z.; Shah, M.A.K.Y.; Yang, C.P.; Hu, J.; Kong, W.; Huang, Q.; Hayat, A.; Muhammad, N. Ionic liquid coated zerovalent manganese nanoparticles with stabilized and enhanced peroxidase-like catalytic activity for colorimetric detection of hydrogen peroxide. Mater. Res. Express 2020, 7, 035018. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Wang, Z.; Liu, J.; Li, T.; Wang, B.; Yang, Z. A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 2015, 5, 10632–10640. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, J.; Zhou, Y.; Pan, X.; Chen, Z.; Ye, Z.; Pan, X. Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chem. Commun. 2013, 49, 7656–7658. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yan, Y.; Zhang, X.; Mao, Y.; Ren, X.; Hu, C.; He, W.; Yin, J.-J. Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale 2020, 12, 3068–3075. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Kong, L.; Wang, X.; He, J.; Bu, X.-H. Engineering Bimetal Synergistic Electrocatalysts Based on Metal–Organic Frameworks for Efficient Oxygen Evolution. Small 2019, 15, e1903410. [Google Scholar] [CrossRef] [PubMed]
- Cao-Milán, R.; He, L.D.; Shorkey, S.; Tonga, G.Y.; Wang, L.-S.; Zhang, X.; Uddin, I.; Das, R.; Sulak, M.; Rotello, V.M. Modulating the catalytic activity of enzyme-like nanoparticles through their surface functionalization. Mol. Syst. Des. Eng. 2017, 2, 624–628. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front 2016, 3, 41–60. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X.; Tang, H.; Munyemana, J.C.; Guan, M.; Zhang, S.; Qiu, H. Deep eutectic solvents-assisted synthesis of ZnCo2O4 nanosheets as peroxidase-like nanozyme and its application in colorimetric logic gate. Talanta 2021, 222, 121680. [Google Scholar] [CrossRef]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Sabu, T. Chapter 5. Methods for Synthesis of Nanoparticles and Fabrication of Nano-composites. In Synthesis of Inorganic Nanomaterials Advances and Key Technologies Micro and Nano Technologies, 1st ed.; Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Sabu, T., Eds.; Woodhead Publishing Company: Sawston, UK, 2018; pp. 121–139. ISBN 9780081019757. [Google Scholar]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of silver nanoparticles bu chemical reduction method: Effect of reducing agent and surfactant concentration. Int. J. Automot. Mech. Eng. 2014, 10, 1920–1927. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chang, H.-Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005, 31, 795–802. [Google Scholar] [CrossRef]
- Vokhmyanina, D.V.; Andreeva, K.D.; Komkova, M.A.; Karyakina, E.E.; Karyakin, A.A. ‘Artificial peroxidase’ nanozyme–enzyme based lactate biosensor. Talanta 2020, 208, 120393. [Google Scholar] [CrossRef]
- Neampet, S.; Ruecha, N.; Qin, J.; Wonsawat, W.; Chailapakul, O.; Rodthongkum, N. A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim. Acta 2019, 186, 752. [Google Scholar] [CrossRef]
- Matos-Peralta, Y.; Antuch, M. Review—Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J. Electrochem. Soc. 2019, 167, 037510. [Google Scholar] [CrossRef]
- Meng, X.; Gao, L.; Fan, K.; Yan, X. Nanozyme-Based Tumor Theranostics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 425–457. [Google Scholar]
- Chen, W.; Gao, G.; Jin, Y.; Deng, C. A facile biosensor for Aβ40O based on fluorescence quenching of prussian blue nanoparticles. Talanta 2020, 216, 120930. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, Z.; Guo, C.; Hu, B.; Wang, M.; Du, M.; Du, M. Bifunctional bioplatform based on NiCo Prussian blue analogue: Label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sens. Actuators B Chem. 2019, 298, 126852. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Shamsipur, M.; Saber, R.; Sarkar, S.; Zolfaghari, N. An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sens. Actuators B Chem. 2017, 243, 823–830. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.; Hong, J.; Yan, X.; Liang, M. Nanozymes: A New Disease Imaging Strategy. Front. Bioeng. Biotechnol. 2020, 8, 15. [Google Scholar] [CrossRef]
- Stasyuk, N.; Gayda, G.Z.; Zakalskiy, A.E.; Zakalska, O.; Serkiz, R.; Gonchar, M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem. 2019, 285, 213–220. [Google Scholar] [CrossRef]
- Gayda, G.Z.; Demkiv, O.M.; Gurianov, Y.; Serkiz, R.Y.; Gonchar, M.V.; Nisnevitch, M. “Green” Nanozymes: Synthesis, Characterization, and Application in Amperometric (Bio)sensors. Multidiscip. Digit. Publ. Inst. Proc. 2020, 60, 58. [Google Scholar] [CrossRef]
- Gayda, G.Z.; Demkiv, O.M.; Stasyuk, N.Y.; Serkiz, R.Y.; Lootsik, M.D.; Errachid, A.; Gonchar, M.V.; Nisnevitch, M. Metallic Nanoparticles Obtained via “Green” Synthesis as a Platform for Biosensor Construction. Appl. Sci. 2019, 9, 720. [Google Scholar] [CrossRef]
- Stasyuk, N.; Gayda, G.Z.; Klepach, H.; Gonchar, M.V. Nanoparticles of Noble Metals as Effective Platforms for the Fabrication of Amperometric Biosensors on Hydrogen Peroxide. Sens. Lett. 2016, 14, 1169–1177. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Shang, Y.; Zhang, P.; Liu, J.; Zheng, J. Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim. Acta 2018, 185, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huo, D.; Bao, J.; Yang, M.; Chen, M.; Hou, J.; Fa, H.; Hou, C. Biosensor based on 3D graphene-supported Fe3O4 quantum dots as biomimetic enzyme for in situ detection of H2O2 released from living cells. Sens. Actuators B Chem. 2017, 244, 1037–1044. [Google Scholar] [CrossRef]
- Niu, Q.; Bao, C.; Cao, X.; Liu, C.; Wang, H.; Lu, W. Ni–Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva. Biosens. Bioelectron. 2019, 141, 111445. [Google Scholar] [CrossRef] [PubMed]
- Keihan, A.H.; Karimi, R.R.; Sajjadi, S. Wide dynamic range and ultrasensitive detection of hydrogen peroxide based on beneficial role of gold nanoparticles on the electrochemical properties of prussian blue. J. Electroanal. Chem. 2020, 862, 114001. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, Y.; Cheng, T.; Lai, W.-Y.; Huang, W. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale 2015, 7, 16012–16019. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Du, X.; Chen, Y.; Dong, W.; Han, B.; Chen, Q. Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta 2016, 159, 280–286. [Google Scholar] [CrossRef]
- Sitnikova, N.A.; Borisova, A.V.; Komkova, M.A.; Karyakin, A.A. Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates. Anal. Chem. 2011, 83, 2359–2363. [Google Scholar] [CrossRef]
- Pandey, P.C.; Panday, D.; Pandey, A.K. Polyethylenimine mediated synthesis of copper-iron and nickel-iron hexacyanoferrate nanoparticles and their electroanalytical applications. J. Electroanal. Chem. 2016, 780, 90–102. [Google Scholar] [CrossRef]
- Karpova, E.V.; Karyakina, E.E.; Karyakin, A.A. Communication—Accessing Stability of Oxidase-Based Biosensors via Stabilizing the Advanced H2O2Transducer. J. Electrochem. Soc. 2017, 164, B3056–B3058. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, S.; Xu, H.; Zhao, Q.; Zhang, Z.; Yao, Y. Preparation of poly(N-acetylaniline)–Prussian blue hybrid composite film and its application to hydrogen peroxide sensing. Anal. Methods 2014, 6, 8003–8010. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Karyakina, E.E.; Gorton, L. Amperometric Biosensor for Glutamate Using Prussian Blue-Based “Artificial Peroxidase” as a Transducer for Hydrogen Peroxide. Anal. Chem. 2000, 72, 1720–1723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Duan, Y.; Shao, Z.; Chen, C.; Yang, M.; Lu, G.; Xu, W.; Liao, X. Amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with a nanocomposite prepared from ferumoxytol and reduced graphene oxide decorated with platinum nanoparticles. Microchim. Acta 2019, 186, 386. [Google Scholar] [CrossRef] [PubMed]
- Karyakin, A.A.; Gitelmacher, O.V.; Karyakina, E.E. Prussian Blue-Based First-Generation Biosensor. A Sensitive Am-perometric Electrode for Glucose. Anal. Chem. 1995, 67, 2419–2423. [Google Scholar] [CrossRef]
No | NPs | Reaction Mixture and Conditions |
---|---|---|
1 | Fe/Ce S | 2 mL 50 mM FeCl3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM Na2S; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
2 | Cu/Ce S | 1 mL 0.01 mM Ce(HCO3)4 + 1 mL 10 mM sodium borohydride, vigorous stirring for 5 min followed by adding 2 mL 20 mM CuSO4; incubation without stirring for 1 h at 20 °C + 0.1 mL 10 mM Na2S; stirring for 5 min at 20 °C. |
3 | Fe/Mn | 2 mL 50 mM FeCl3 + 2 mL 50 mM MnSO4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM Na2S; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
4 | Ag/Ce S | 2 mL 50 mM AgNO3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min followed by adding 0.1 mL 10 mM Na2S; stirring for 1 min at 20 °C. incubation without stirring for 24 h at 20 °C. |
5 | Pt/Cu | 0.2 mL 48 mM H2PtCl6 + 0.16 mL 100 mM ascorbic acid, vigorous stirring for 5 min followed by adding 1 mL 100 mM CuSO4 and 0.2 mL 100 mM ascorbic acid; incubation without stirring for 24 h at 20 °C. |
6 | Fe/Ce | 2 mL 50 mM FeCl3 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
7 | Zn/Ce | 2 mL 50 mM ZnSO4 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
8 | Cu/Ce | 2 mL 50 mM CuSO4 + 2 mL 15 mM Ce(HCO3)4, light stirring for 5 min at 20 °C followed by adding 0.5 mL 10 mM NH4OH; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
9 | Pd/Ce | 1 mL 0.01 mM PdCl3 + 1 mL 100 mM NaBH4, vigorous stirring for 5 min followed by adding 4 mL 0.01 mM Ce(HCO3)4 and 0.5 mL 100 mM NaBH4. |
10 | Pd/Cu | 1 mL 0.01 mM PdCl3 + 1 mL 10 mM NaBH4, vigorous stirring for 3 min followed by adding 2 mL 0.01 mM Ce(HCO3)4 and 0.5 mL 100 mM NaBH4; stirring for 1 min; incubation without stirring for 24 h at 20 °C. |
11 | Ag/Ce | 2 mL 50 mM AgNO3 + 2 mL 15 mM Ce(HCO3)4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
12 | Au/Cu | 2 mL 50 mM CuSO4 + 2 mL 15 mM Ce(HCO3)4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
13 | Au | 0.145 mL 58.5 mM HAuCl4 + 10 mL 10 mM CTAB, vigorous stirring; + 0.18 mL 100 mM NaBH4; stirring for 2 h at 20 °C. |
14 | Ag/Cu | 2 mL 50 mM CuSO4 + 2 mL AgNO3, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; incubation without stirring for 24 h at 20 °C. |
15 | Pt/Ag | 0.2 mL 48 mM H2PtCl6 + 2 mL AgNO3, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
16 | Ag/Zn | 2 mL 50 mM AgNO3 + 2 mL 50 mM ZnSO4, vigorous stirring for 5 min at 20 °C followed by adding 0.1 mL 100 mM NaBH4; stirring for 5 min; incubation without stirring for 24 h at 20 °C. |
No. | Nanozyme | Synthesis Method | Specific Activity, Units /mg |
---|---|---|---|
1 | Fe/Ce S | Na2S | 1.86 ± 0.16 |
2 | Cu/Ce S | NaBH4/Na2S | 1.27 ± 0.11 |
3 | Fe/Mn | Na2S | 0.12 ± 0.01 |
4 | Ag/Ce S | Na2S | 0.05 ± 0.004 |
5 | Pt/Cu | Ascorbic acid | 1.84 ± 0.14 |
6 | Fe/Ce | NH4OH | 3.06 ± 0.26 |
7 | Zn/Ce | NH4OH | 2.28 ± 0.21 |
8 | Cu/Ce | NH4OH | 0.90 ± 0.007 |
9 | Pd/Ce | NaBH4 | 0.72 ± 0.06 |
10 | Pd/Cu | NaBH4 | 0.4 ± 0.03 |
11 | Ag/Ce | NaBH4 | 2.50 ± 0.22 |
12 | Au/Cu | NaBH4 | 4.22 ± 0.34 |
13 | Au | NaBH4 | 2.62 ± 0.19 |
14 | Ag/Cu | NaBH4 | 0.24 ± 0.02 |
15 | Pt/Ag | NaBH4 | 1.40 ± 0.11 |
16 | Ag/Zn | NaBH4 | 0.79 ± 0.06 |
Sensitive Film | No. in Table 2 | Sensitivity, A M−1 m−2 | LOD, µM | Linear Range, µM | KMapp, mM | Imax, μA |
---|---|---|---|---|---|---|
PO | 352 | 400 | 4.9 ± 1.1 | 5.0 ± 0.2 | ||
Cu/Ce S | 2 | 1890 | 0.42 ± 0.006 | 1.5–20,000 | 43.3 ± 14.5 | 786.4 ± 167.7 |
Fe/Ce | 6 | 1372 | 2.90 ± 0.010 | 50–1000 | 14.4 ± 1.3 | 104.5 ± 3.3 |
Au/Cu | 12 | 793 | 4.88 ± 0.010 | 50–15,000 | 28.0 ± 3.2 | 213.3 ± 13.1 |
Ag/Ce | 11 | 782 | 11 ± 0.009 | 50–4000 | 16.4 ± 2.5 | 152.54 ± 8.8 |
Pd/Cu | 10 | 581 | 39 ± 1.20 | 117–14,300 | 34.7 ± 2.02 | 166.2 ± 6.4 |
Pd/Ce | 9 | 496 | 4.55 ± 0.006 | 17–4100 | 13.4 ± 3.2 | 68.0 ± 3.2 |
Ag/Zn | 16 | 375 | 41 ± 1.50 | 17–25,000 | 18.1 ± 0.4 | 96.79 ± 8.56 |
Pt/Cu | 5 | 163 | 5.54 ± 0.002 | 17–25,000 | 26.8 ± 5.0 | 55.2 ± 5.4 |
Electrode | PO Mimetic | Potential, mV | Sensitivity, A M−1 m−2 | Linear Range, μM | Ref. |
---|---|---|---|---|---|
1 GCE | Cu2O/PANI/rGhO | −200 | 394 | 0.8–12,780 | [45] |
GCE | Fe3O4/3D GNCs | −200 | 2742 | 0.8–330 | [46] |
GCE | Ni–Fe PBA-4 HNCs | −50 | 361 | 0.1–20,000 | [47] |
GCE | PB/BG AuNPs-PB/BG | −50 | 2852 11,243 | 4–830 9.2–8100 | [48] |
2 DBD DBD GE | PB Ni-FePBA PB/NZ | −50 | 2100 1500 4500 | 0.5–1000 | [11] |
GCE | MnPBA | 1472 | 3–8610 | [49] | |
GCE | rGhO/Pt-Ag | −50 | 6996 | 5–1500 | [50] |
GCE | Ni-PB | −50 | 3500 | 0.1–1000 | [51] |
Graphite paste | Ni-FePBA Cu-FePBA | −50 | 1130 2030 | 2–1000 0.5–1000 | [52] |
3 GE | PtRu | −50 | 194 | 17–25,000 | [41] |
GE | gCuHCF gFeHCF PO | −50 | 1620 1090 352 | 16–4100 116–14,300 15–20,000 | [42] |
GCE | Ni-FePBA | 0 | 18,000 | up to 100 | [53] |
GCE | PNAANI–PB | 0 | 5073 | 1–1000 | [54] |
GCE | PB | 50 | 6000 | 0.1–100 | [55] |
GCE | Fe/rGhO-Pt | 100 | 3400 | 7.5–4270 | [56] |
GCE | PB | 180 | 10,000/20,000 | 1–5000 | [57] |
Cu/CeS | 1890 | 1.5–20,000 | |||
GE | Au/Cu Fe/Ce | −50 - | 793 1372 | 17–15,000 up to 1000 | This paper |
Commercial Sample | Concentration of H2O2 | CV, % | Producer | ||
---|---|---|---|---|---|
Estimated | Declared, % | ||||
mM | % | ||||
Antiseptic spray for arms | 33.2 | 0.11 | 0.10 | 10.0 | Pharmaceutical factory “Viola”, Zaporizhzhia, Ukraine |
Universal antiseptic solution | 880 | 2.95 | 3.0 | 1.7 | |
Famidez–Sanosil | 588.6 | 1.98 | 2.0 | 1.0 | Ltd Dezomark, Novoyavorivsk, Ukraine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demkiv, O.; Stasyuk, N.; Serkiz, R.; Gayda, G.; Nisnevitch, M.; Gonchar, M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Appl. Sci. 2021, 11, 777. https://doi.org/10.3390/app11020777
Demkiv O, Stasyuk N, Serkiz R, Gayda G, Nisnevitch M, Gonchar M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences. 2021; 11(2):777. https://doi.org/10.3390/app11020777
Chicago/Turabian StyleDemkiv, Olha, Nataliya Stasyuk, Roman Serkiz, Galina Gayda, Marina Nisnevitch, and Mykhailo Gonchar. 2021. "Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application" Applied Sciences 11, no. 2: 777. https://doi.org/10.3390/app11020777
APA StyleDemkiv, O., Stasyuk, N., Serkiz, R., Gayda, G., Nisnevitch, M., & Gonchar, M. (2021). Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences, 11(2), 777. https://doi.org/10.3390/app11020777