Fracture System and Rock-Mass Characterization by Borehole Camera Surveying: Application in Dimension Stone Investigations in Geologically Complex Structures
Abstract
:Featured Application
Abstract
1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Drillhole Camera Video Fracture Surveying
3.2. Statistical Fracture Distribution Parameters and Relation to the Associated Geological Structure
- –
- P10—number of fractures per unit distance (in our example 1 m drill hole length) (m−1) (Figure 7)
- –
- Apparent (Sm) and true fracture spacing (d) in each individual set (m) (Figure 7)—if fracture orientation parameters and apparent spacing between fracture in the set are known, we can calculate true spacing by equation:d = Sm × sinδ
- –
- Volumetric Joint Count (Jv)—number of fractures in the unit volume of the rock mass (m−3) [29,30,31,32,33,34]. This parameter can be calculated from the true fracture spacing [42]. Volumetric Joint Count represents a measure of fracture density in the rock volume (in the literature, it can also be marked as P30):Jv = 1/d1 + 1/d2 + … + 1/dn
4. Results
4.1. The Analysis of Fracture Orientation
4.2. Statistical Analysis of Spatial Distribution Parameters of Fractures
4.2.1. Linear Density/Intensity of Fractures—P10
4.2.2. Apparent and True Fracture Spacing
4.2.3. Volumetric Joint Count (Jv)
5. Discussion
6. Conclusions
- (1)
- Borehole camera technology is a relatively low-cost method compared with other drill hole surveying techniques for acquiring fracture orientation data. Although the measured data quality is lower than the Optical or Acoustic Televiewer, with drill hole core data, fracture measurements on the terrain, and precise interpretation of geological structure, these methods give a satisfactory basement for preliminary fracture pattern interpretation.
- (2)
- Besides fracture orientation, by borehole camera, it is possible to extract the rock mass condition, fracture aperture, fracture infill, cross-cut relations between fractures, and karst forms (i.e., caves and caverns), fracture surface roughness estimation, lithological features of rocks, and so forth.
- (3)
- We preliminary define four discontinuity sets (bedding and three fracture sets) that correspond with the position in the gentle limb of an overturned anticline, which partially confirms that the survey was successful. After fracture orientation measurements, the following parameters of spatial distribution were calculated: Linear fracture intensity (P10), Apparent Fracture Spacing (Sm), True Fracture Spacing (d), and Volumetric Joint Count (Jv), which indicate a small degree of jointing that is convenient for dimension stone deposit.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blachowski, J.; Buczyńska, A. Spatial and multicriteria analysis of dimension stones and crushed rocks quarrying in the context of sustainable regional development: Case study of lower silesia (Poland). Sustainability 2020, 12, 3022. [Google Scholar] [CrossRef] [Green Version]
- Mosch, S.; Nikolayew, D.; Ewiak, O.; Siegesmund, S. Optimized extraction of dimension stone blocks. Environ. Earth Sci. 2011, 63, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.H.; Johnson, C.D. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. J. Appl. Geophys. 2004, 55, 151–159. [Google Scholar] [CrossRef]
- Massiot, C.; McNamara, D.D.; Lewis, B.; Price, L.; Bignall, G. Statistical corrections of fracture sampling bias in boreholes from acoustic televiewer logs. In Proceedings of the 34th New Zealand Geothermal Workshop 2012, Auckland, New Zealand, 19–21 November 2012. [Google Scholar] [CrossRef]
- Zetterlund, M.; Ericsson, L.O.; Stigsson, M. Fracture mapping for geological prognoses. Comparison of fractures from boreholes, tunnel and 3-D blocks. In Proceedings of the ISRM International Symposium—EUROCK 2012, Stockholm, Sweden, , 28 May 2012; pp. 1–13. [Google Scholar]
- Lau, J.S.O.; Auger, L.F.; Bisson, J.G. Subsurface Fracture Surveys Using a Borehole Television Camera and Acoustic Televiewer. Can. Geotech. J. 1987, 24, 499–508. [Google Scholar] [CrossRef]
- Yousefi, M.; Moussavi, S.M.; Khatib, M.M. Analysis of fold and fault-related fracture systems development using image logs at Asmari Formation in the Rag Sefid Anticline, SW Iran. Geopersia 2019, 9, 279–292. [Google Scholar] [CrossRef]
- Martel, S.J. Analysis of Fractures orientatio data from boreholes. Environ. Eng. Geosci. 1999, 5, 213–233. [Google Scholar] [CrossRef]
- Ahmad, H.C.K.; Nik, M.N.I.; Zaidi, I.; Nurul, W.A.K.; Azmi, I.; Saiful, A.J. Acoustic and Optical Televiewer Borehole Logging. R&D Seminar 2016: Research and Development Seminar 2016, Malaysia. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:48050366 (accessed on 1 December 2020).
- Thomas, R.; Fenton, J.; Wilson, H.; Lamb, P. Structural interpretation from Televiewer surveys. In Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Perth, Australia, 9–11 September 2015; pp. 729–741. [Google Scholar] [CrossRef]
- Han, Z.; Wang, C.; Hu, S.; Wang, Y. Application of Borehole Camera Technology in Fractured Rock Mass Investigation of a Submarine Tunnel. J. Coast. Res. 2018, 609–614. [Google Scholar] [CrossRef]
- Ba, X.; Li, L.; Sun, S.; Liu, H.; Wang, J.; Fang, Z. Development Status of Digital Detection Technology for Unfavorable Geological Structures in Deep Tunnels. KSCE J. Civ. Eng. 2020, 24, 1318–1329. [Google Scholar] [CrossRef]
- De Fredrick, F.; Nguyen, T.; Seymour, C.; Dempers, G. Geotechnical data from optical and acoustic televiewer surveys. AusIMM Bull. 2014, 62, 64–66. [Google Scholar]
- Srinivas, K.N.S.S.S.; Rao, M.S.; Kishore, P.P.; Gopinadh, D.; Raza, H.; Arora, K.; Satyanarayana, H.V.S. Delineation of Fractures through Acoustic Televiewer Log. J. Geol. Soc. India 2018, 91, 569–574. [Google Scholar] [CrossRef]
- Mauldon, M.; Mauldon, J.G. Fracture sampling on a cylinder: From scanlines to boreholes and tunnels. Rock Mech. Rock Eng. 1997, 30, 129–144. [Google Scholar] [CrossRef]
- Gwynn, X.; Brown, M.; Mohr, P. Combined use of traditional core logging and televiewer imaging for practical geotechnical data collection. In Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Perth, Australia, 25–27 September 2013; pp. 261–272. [Google Scholar] [CrossRef] [Green Version]
- Korbar, T. Orogenic evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth Sci. Rev. 2009, 96, 296–312. [Google Scholar] [CrossRef]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Ustaszewski, K.; Schmid, S.M.; Lugović, B.; Schuster, R.; Schaltegger, U.; Bernoulli, D.; Hottinger, L.; Kounov, A.; Fügenschuh, B.; Schefer, S. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos 2009, 108, 106–125. [Google Scholar] [CrossRef] [Green Version]
- Govorčin, M.; Herak, M.; Matoš, B.; Pribičević, B.; Vlahović, I. Constraints on complex faulting during the 1996 Ston-Slano (Croatia) earthquake inferred from the DInSAR, seismological, and geological observations. Remote Sens. 2020, 12, 1157. [Google Scholar] [CrossRef] [Green Version]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Dragičević, I.; Velić, I. The Northeastern Margin of the Adriatic Carbonate Platform. Geol. Croat. 2002, 55, 185–232. [Google Scholar] [CrossRef]
- Kapuralić, J.; Šumanovac, F.; Markušić, S. Crustal structure of the northern Dinarides and southwestern part of the Pannonian basin inferred from local earthquake tomography. Swiss J. Geosci. 2019, 112, 181–198. [Google Scholar] [CrossRef]
- Šumanovac, F.; Markušić, S.; Engelsfeld, T.; Jurković, K.; Orešković, J. Shallow and deep lithosphere slabs beneath the Dinarides from teleseismic tomography as the result of the Adriatic lithosphere downwelling. Tectonophysics 2017, 712–713, 523–541. [Google Scholar] [CrossRef]
- Ustaszewski, K.; Schmid, S.M.; Fügenschuh, B.; Tischler, M.; Kissling, E.; Spakman, W. A map-view restoration of the alpine-carpathian-dinaridic system for the early miocene. Swiss J. Geosci. 2008, 101. [Google Scholar] [CrossRef] [Green Version]
- Korolija, B.; Borović, I.; Grimani, I.; Marinčić, S. Basic Geological Map of SFRY in Scale 1:100,000, Sheet Korčula K33-47; Institut za Geološka IstražIvanja Zagreb, Savezni Geološki Zavod Beograd: Beograd, Serbia, 1975.
- Sani, F.; Vannucci, G.; Boccaletti, M.; Bonini, M.; Corti, G.; Serpelloni, E. Insights into the fragmentation of the Adria Plate. J. Geodyn. 2016, 102, 121–138. [Google Scholar] [CrossRef]
- Korolija, B.; Borović, I.; Grimani, I.; Marinčić, S.; Jagačić, T.; Magaš, N.; Milanović, M. Explanatory Notes for Basic Geological Map of Yugoslavia in Scale 1:100,000, Sheet Lastovo and Kočula; Institut za geološka istraživanja Zagreb, Federal Geological Institute, Beogrd: Beograd, Serbia, 1968.
- Raić, V.; Papeš, J.; Ahac, A.; Korolija, B.; Grimani, I.; Marinčić, S. Basic Geological Map of Yugoslavia in Scale 1:100,000, Sheet Ston K33-48; Federal Geological Institute Beograd: Beograd, Serbia, 1980.
- Raić, V.; Papeš, J. Explanatory Notes for Basic Geological Map of SFRY in Scale 1:100,000, Sheet Ston K33-48; Geoinženjering-OOUR Institut za geologiju, Sarajevo, Geološki zavod, Zagreb, Federal Geological Institute Beograd: Beograd, Serbia, 1982.
- Marinčić, S.; Magaš, N.; Benček, Đ. Basic Geological Map of SFRY in Scale 1:100,000 Sheet Ploče K33-23; Institut za geološka istraživanja Zagreb, Federal Geological Institute, Beogrd: Beograd, Serbia, 1977.
- Lukšić, B.; Miko, S.; Hasan, O.; Dedić, Ž.; Prtoljan, B.; Fuček, L. Mining-Geological Study of Dubrovnik-Neretva County; Croatian Geological Survey: Zagreb, Croatia, 2008. [Google Scholar]
- Fisher, R. Dispersion on a Sphere. Proc. R. Soc. A Math. Phys. Eng. Sci. 1953, 217, 295–305. [Google Scholar] [CrossRef]
- Terzaghi, R.D. Sources of error in joint surveys. Geotechnique 1965, 15, 287–304. [Google Scholar] [CrossRef]
- Price, N.J. Fault and Joint Development in Brittle and Semibrittle Rock. Pergamon Press: London, UK, 1966. [Google Scholar]
- Watkins, H.; Healy, D.; Bond, C.E.; Butler, R.W.H. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland. J. Struct. Geol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Watkins, H.; Butler, R.W.H.; Bond, C.E.; Healy, D. Influence of structural position on fracture networks in the Torridon Group, Achnashellach fold and thrust belt, NW Scotland. J. Struct. Geol. 2015, 74, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Ferrill, D.A.; Morris, A.P.; McGinnis, R.N.; Smart, K.J.; Wigginton, S.S.; Hill, N.J. Mechanical stratigraphy and normal faulting. J. Struct. Geol. 2017, 94, 275–302. [Google Scholar] [CrossRef]
- McGinnis, R.N.; Ferrill, D.A.; Morris, A.P.; Smart, K.J.; Lehrmann, D. Mechanical stratigraphic controls on natural fracture spacing and penetration. J. Struct. Geol. 2017, 95, 160–170. [Google Scholar] [CrossRef]
- Laubach, S.E.; Olson, J.E.; Cross, M.R. Mechanical and fracture stratigraphy. Am. Assoc. Pet. Geol. Bull. 2009, 93, 1413–1426. [Google Scholar] [CrossRef]
- Boro, H.; Rosero, E.; Bertotti, G. Fracture-network analysis of the Latemar Platform (northern Italy): Integrating outcrop studies to constrain the hydraulic properties of fractures in reservoir models. Pet. Geosci. 2014, 20, 79–92. [Google Scholar] [CrossRef]
- Palmström, A. Measurement and characterizations of rock mass jointing. In In-Situ Characterization of Rocks; CRC Press/Balkema: Leiden, The Netherlands, 2001; pp. 1–40. [Google Scholar]
- Gholipour, A.M. Patterns and structural positions of productive fractures in the Asmari reservoirs, southwest Iran. J. Can. Pet. Technol. 1998, 37, 44–50. [Google Scholar] [CrossRef]
- Iñigo, J.F.; Laubach, S.E.; Hooker, J.N. Fracture abundance and patterns in the Subandean fold and thrust belt, Devonian Huamampampa Formation petroleum reservoirs and outcrops, Argentina and Bolivia. Mar. Pet. Geol. 2012, 35, 201–218. [Google Scholar] [CrossRef]
- Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K.; Müller, B.; Reinecker, J.; Reiter, K.; Tingay, M.; Wenzel, F.; Xie, F.; et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 2018, 744, 484–498. [Google Scholar] [CrossRef]
- Palmstrom, A. Measurements of and correlations between block size and rock quality designation (RQD). Tunn. Undergr. Sp. Technol. 2005, 20, 362–377. [Google Scholar] [CrossRef]
- Primavori, P. Planet Stone, 7th ed.; Giorgio Zusi Editore: Verona, Italy, 1999; p. 326. [Google Scholar]
Set | Drillhole Data | |||||
---|---|---|---|---|---|---|
Dip Direction | Dip Angle | No. of Measurements | Standard Deviation (°) | Fisher | ||
Bedding | S0 | 15 | 46 | 16 | 55.99 | 41.18 |
Fractures | S1 | 228 | 73 | 58 | 53.89 | 16.89 |
S2 | 86 | 72 | 104 | 53.95 | 18.08 | |
S3 | 319 | 76 | 35 | 53.61 | 15.60 | |
Set | Terrain Data | |||||
Dip Direction | Dip Angle | No. of Measurements | Fisher | |||
Bedding | S0 | 29 | 36 | 33 | 55.47 | 30.41 |
Fractures | S1 | 227 | 61 | 9 | 54.52 | 12.82 |
S2 | 114 | 72 | 4 | 52.25 | 8.52 | |
S3 | 0 | 60 | 1 | - | - | |
Set | All Measurements | |||||
Dip Direction | Dip Angle | No. of Measurements | Fisher | |||
Bedding | S0 | 20 | 39 | 49 | 55.40 | 29.65 |
Fractures | S1 | 226 | 71 | 67 | 53.84 | 16.34 |
S2 | 93 | 70 | 108 | 53.77 | 16.09 | |
S3 | 319 | 76 | 36 | 53.61 | 15.05 |
Drillhole | Fracture Set | Length of the Interval | Number of Fractures Per Interval | P10 |
---|---|---|---|---|
(m) | m−1 | |||
B-1 | S1 | 33 | 5 | 0.15 |
B-3 | S1 | 79.4 | 6 | 0.08 |
B-5 | S1 | 44.5 | 11 | 0.25 |
B-6 | S1 | 24.5 | 18 | 0.73 |
B-7 | S1 | 67 | 16 | 0.24 |
B-9 | S1 | 67 | 13 | 0.19 |
B-1 | S2 | 33 | 13 | 0.39 |
B-3 | S2 | 65.3 | 15 | 0.23 |
B-5 | S2 | 25 | 7 | 0.28 |
B-6 | S2 | 27.5 | 12 | 0.44 |
B-7 | S2 | 44.7 | 22 | 0.49 |
B-9 | S2 | 73.8 | 38 | 0.51 |
B-1 | S3 | 28.1 | 0 | 0 |
B-3 | S3 | 56 | 9 | 0.16 |
B-5 | S3 | 44.5 | 0 | 0 |
B-6 | S3 | 20 | 4 | 0.20 |
B-7 | S3 | 56 | 17 | 0.30 |
B-9 | S3 | 73.8 | 0 | 0 |
Average P10 per set | ||||
Set | P10 | |||
S1 | 0.27 | |||
S2 | 0.39 | |||
S3 | 0.11 |
Drillhole | Fracture Set | Drillhole Depth/Interval Length | Apparent Fracture Spacing | The Average Angle between Fracture and Drill Hole Axis | Sinδ | True Fracture Spacing | 1/d |
---|---|---|---|---|---|---|---|
(m) | Sm (m) | ° | d (m) | m−1 | |||
B-3 | S0 | 79.40 | 4.20 | 45.00 | 0.71 | 2.97 | 0.34 |
B-6 | S0 | 53.50 | 2.90 | 40.00 | 0.64 | 1.86 | 0.54 |
B-7 | S0 | 83.00 | 7.70 | 40.00 | 0.64 | 4.95 | 0.20 |
B-9 | S0 | 73.80 | 7.37 | 45.00 | 0.64 | 5.21 | 0.45 |
B-1 | S1 | 44.00 | 8.42 | 31.41 | 0.52 | 4.39 | 0.23 |
B-3 | S1 | 79.40 | 11.92 | 17.70 | 0.30 | 3.63 | 0.28 |
B-5 | S1 | 44.50 | 2.93 | 12.80 | 0.22 | 0.65 | 1.54 |
B-6 | S1 | 53.50 | 1.73 | 16.61 | 0.29 | 0.50 | 2.02 |
B-7 | S1 | 83.00 | 3.93 | 17.67 | 0.30 | 1.19 | 0.84 |
B-9 | S1 | 73.80 | 5.08 | 23.63 | 0.40 | 2.04 | 0.49 |
B-1 | S2 | 44.00 | 3.15 | 29.88 | 0.50 | 1.57 | 0.64 |
B-3 | S2 | 79.40 | 4.82 | 11.81 | 0.20 | 0.99 | 1.01 |
B-5 | S2 | 44.50 | 2.76 | 25.83 | 0.64 | 1.77 | 0.56 |
B-6 | S2 | 53.50 | 3.89 | 26.91 | 0.45 | 1.76 | 0.57 |
B-7 | S2 | 83.00 | 2.72 | 10.40 | 0.18 | 0.49 | 2.03 |
B-9 | S2 | 73.80 | 2.13 | 23.71 | 0.40 | 0.86 | 1.17 |
B-3 | S3 | 44.00 | 6.70 | 10.25 | 0.18 | 1.19 | 0.84 |
B-6 | S3 | 53.50 | 5.01 | 21.67 | 0.37 | 1.85 | 0.54 |
B-7 | S3 | 83.00 | 3.72 | 14.47 | 0.25 | 0.93 | 1.08 |
Bedding S0 | 5.54 | 42.50 | 0.68 | 3.74 | 0.26 | ||
Fracture set S1 | 5.67 | 19.97 | 0.34 | 2.06 | 0.90 | ||
Fracture set S2 | 3.24 | 21.42 | 0.40 | 1.24 | 1.00 | ||
Fracture set S3 | 5.14 | 15.46 | 0.27 | 1.32 | 0.82 | ||
Volumetric Joint Count (m−3) | 2.97 |
Class | Very small | Small | Moderate | Large | Very Large | Crushed |
---|---|---|---|---|---|---|
Jv (m−3) | <1 | 1–3 | 3–10 | 10–30 | 30–60 | >60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavičić, I.; Galić, I.; Kucelj, M.; Dragičević, I. Fracture System and Rock-Mass Characterization by Borehole Camera Surveying: Application in Dimension Stone Investigations in Geologically Complex Structures. Appl. Sci. 2021, 11, 764. https://doi.org/10.3390/app11020764
Pavičić I, Galić I, Kucelj M, Dragičević I. Fracture System and Rock-Mass Characterization by Borehole Camera Surveying: Application in Dimension Stone Investigations in Geologically Complex Structures. Applied Sciences. 2021; 11(2):764. https://doi.org/10.3390/app11020764
Chicago/Turabian StylePavičić, Ivica, Ivo Galić, Mišo Kucelj, and Ivan Dragičević. 2021. "Fracture System and Rock-Mass Characterization by Borehole Camera Surveying: Application in Dimension Stone Investigations in Geologically Complex Structures" Applied Sciences 11, no. 2: 764. https://doi.org/10.3390/app11020764