Optimization of Metal–Ceramic Functionally Graded Plates Using the Simulated Annealing Algorithm
Abstract
:1. Introduction
2. Constitutive Relations of the Functionally Graded Material (FGM)
3. Finite Element Model
4. Optimization with Simulated Annealing
5. Numerical Applications
5.1. Design Optimization Studies with a Simply Supported FGM Plate Subjected to Mechanical Loading
5.2. Design Optimization Studies with a Square FGM Plate with Circular Hole Subjected to Thermal Loading
5.3. Design Optimization Studies with a Square FGM Plate with Circular Hole Subjected to Mechanical Loading
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jha, D.K.; Kant, T.; Singh, R.K. A critical review of recent research on functionally graded plates. Compos. Struct. 2013, 96, 833–849. [Google Scholar] [CrossRef]
- Swaminathan, K.; Naveenkumar, D.T.; Zenkour, A.M.; Carrera, E. Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review. Compos. Struct. 2015, 120, 10–31. [Google Scholar] [CrossRef]
- Thai, H.T.; Kim, S.E. A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 2015, 128, 70–86. [Google Scholar] [CrossRef]
- Gupta, A.; Talha, M. Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 2015, 79, 1–14. [Google Scholar] [CrossRef]
- Nikbakht, S.; Kamarian, S.; Shakeri, M. A review on optimization of composite structures Part II: Functionally graded materials. Compos. Struct. 2019, 214, 83–102. [Google Scholar] [CrossRef]
- Cho, J.R.; Shin, S.W. Material composition optimization for heat-resisting FGMs by artificial neural network. Compos. Part A: Appl. Sci. Manuf. 2004, 35, 585–594. [Google Scholar] [CrossRef]
- Chen, B.; Tong, L. Thermomechanically coupled sensitivity analysis and design optimization of functionally graded materials. Comput. Methods Appl. Mech. Eng. 2005, 194, 1891–1911. [Google Scholar] [CrossRef]
- Goupee, A.J.; Vel, S.S. Multi-objective optimization of functionally graded materials with temperature-dependent material properties. Mater. Des. 2007, 28, 1861–1879. [Google Scholar] [CrossRef]
- Goupee, A.J.; Vel, S.S. Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm. Comput. Methods Appl. Mech. Eng. 2006, 195, 5926–5948. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, M.Y. Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput. Aided Des. 2008, 40, 660–675. [Google Scholar] [CrossRef]
- Icardi, U.; Ferrero, L. Optimization of sandwich panels with functionally graded core and faces. Compos. Sci. Technol. 2009, 69, 575–585. [Google Scholar] [CrossRef]
- Na, K.S.; Kim, J.H. Volume fraction optimization of functionally graded composite panels for stress reduction and critical temperature. Finite Elem. Anal. Des. 2009, 45, 845–851. [Google Scholar] [CrossRef]
- Na, K.S.; Kim, J.H. Optimization of volume fractions for functionally graded panels considering stress and critical temperature. Compos. Struct. 2009, 89, 509–516. [Google Scholar] [CrossRef]
- Na, K.S.; Kim, J.H. Volume fraction optimization for step-formed functionally graded plates considering stress and critical temperature. Compos. Struct. 2010, 92, 1283–1290. [Google Scholar] [CrossRef]
- Mozafari, H.; Ayob, A.; Kamali, F. Optimization of functional graded plates for buckling load by using imperialist competitive algorithm. Procedia Technol. 2012, 1, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.Y.; Parks, G.T.; Tan, S.T. Optimal design of functionally graded materials using a procedural model and particle swarm optimization. Comput. Aided Des. 2012, 44, 300–310. [Google Scholar] [CrossRef]
- Noh, Y.J.; Kang, Y.J.; Youn, S.J.; Cho, J.R.; Lim, O.K. Reliability-based design optimization of volume fraction distribution in functionally graded composites. Comput. Mater. Sci. 2013, 69, 435–442. [Google Scholar] [CrossRef]
- Vatanabe, S.L.; Paulino, G.H.; Silva, E.C.N. Design of functionally graded piezocomposites using topology optimization and homogenization—Toward effective energy harvesting materials. Comput. Methods Appl. Mech. Eng. 2013, 266, 205–218. [Google Scholar] [CrossRef]
- Ashjari, M.; Khoshravan, M.R. Mass optimization of functionally graded plate for mechanical loading in the presence of deflection and stress constraints. Compos. Struct. 2014, 110, 118–132. [Google Scholar] [CrossRef]
- Loja, M.A.R. On the use of particle swarm optimization to maximize bending stiffness of functionally graded structures. J. Symb. Comput. 2014, 61, 12–30. [Google Scholar] [CrossRef]
- Taheri, A.H.; Hassani, B. Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies. Comput. Methods Appl. Mech. Eng. 2014, 277, 46–80. [Google Scholar] [CrossRef]
- Taheri, A.H.; Hassani, B.; Moghaddam, N.Z. Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach. Int. J. Solids Struct. 2014, 51, 416–429. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.X.; Shimoda, M. Interface shape optimization of designing functionally graded sandwich structures. Compos. Struct. 2015, 125, 88–95. [Google Scholar] [CrossRef]
- Wang, Z.W.; Zhang, Q.; Xia, L.Z.; Wu, J.T.; Liu, P.Q. Stress Analysis and Parameter Optimization of an FGM Pressure Vessel Subjected to Thermo-Mechanical Loadings. Procedia Eng. 2015, 130, 374–389. [Google Scholar] [CrossRef] [Green Version]
- Roque, C.M.C.; Martins, P.A.L.S. Differential evolution for optimization of functionally graded beams. Compos. Struct. 2015, 133, 1191–1197. [Google Scholar] [CrossRef]
- Roque, C.M.C.; Martins, P.A.L.S.; Ferreira, A.J.M.; Jorge, R.M.N. Differential evolution for free vibration optimization of functionally graded nano beams. Compos. Struct. 2016, 156, 29–34. [Google Scholar] [CrossRef]
- Tsiatas, G.C.; Charalampakis, A.E. Optimizing the natural frequencies of axially functionally graded beams and arches. Compos. Struct. 2017, 160, 256–266. [Google Scholar] [CrossRef]
- Shabana, Y.M.; Elsawaf, A.; Khalaf, H.; Khalil, Y. Stresses minimization in functionally graded cylinders using particle swarm optimization technique. Int. J. Press. Vessel. Pip. 2017, 154, 1–10. [Google Scholar] [CrossRef]
- Lieu, Q.X.; Lee, J. Modeling and optimization of functionally graded plates under thermo-mechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm. Compos. Struct. 2017, 179, 89–106. [Google Scholar] [CrossRef]
- Lieu, Q.X.; Lee, J.; Lee, D.; Lee, S.; Kim, D.; Lee, J. Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm. Thin Walled Struct. 2018, 124, 588–604. [Google Scholar] [CrossRef]
- Jafari, S.; Hojjati, M.H.; Fathi, A. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density. Int. J. Press. Vessel. Pip. 2012, 92, 41–47. [Google Scholar] [CrossRef]
- Khorsand, M.; Tang, Y. Design functionally graded rotating disks under thermoelastic loads: Weight optimization. Int. J. Press. Vessel. Pip. 2018, 161, 33–40. [Google Scholar] [CrossRef]
- Moita, J.S.; Araújo, A.L.; Correia, V.F.; Soares, C.M.M.; Herskovits, J. Material distribution and sizing optimization of functionally graded plate-shell structures. Compos. Part B Eng. 2018, 142, 263–272. [Google Scholar] [CrossRef]
- Vel, S.S.; Pelletier, J.L. Multi-objective optimization of functionally graded thick shells for thermal loading. Compos. Struct. 2007, 81, 386–400. [Google Scholar] [CrossRef]
- Wang, C.; Koh, J.M.; Yu, T.; Xie, N.G.; Cheong, K.H. Material and shape optimization of bi-directional functionally graded plates by GIGA and an improved multi-objective particle swarm optimization algorithm. Comput. Methods Appl. Mech. Eng. 2020, 366, 113017. [Google Scholar] [CrossRef]
- Ashjari, M.; Khoshravan, M.R. Multi-objective optimization of a functionally graded sandwich panel under mechanical loading in the presence of stress constraint. J. Mech. Behav. Mater. 2017, 26, 79–93. [Google Scholar] [CrossRef]
- Correia, V.M.F.; Madeira, J.F.A.; Araújo, A.L.; Soares, C.M.M. Multiobjective optimization of ceramic-metal functionally graded plates using a higher order model. Compos. Struct. 2018, 183, 146–160. [Google Scholar] [CrossRef]
- Correia, V.M.F.; Madeira, J.F.A.; Araújo, A.; Soares, C.M.M. Multiobjective optimization of functionally graded material plates with thermo-mechanical loading. Compos. Struct. 2019, 207, 845–857. [Google Scholar] [CrossRef]
- Moleiro, F.; Madeira, J.F.A.; Carrera, E.; Reddy, J.N. Design optimization of functionally graded plates under thermo-mechanical loadings to minimize stress, deformation and mass. Compos. Struct. 2020, 245, 112360. [Google Scholar] [CrossRef]
- Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Maciel-Castillo, O.; Aranguren, I.; Fausto, F. An improved Simulated Annealing algorithm based on ancient metallurgy techniques. Appl. Soft Comput. 2019, 84, 105761. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates-Theory and Applications; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Reddy, J.N.; Chin, C.D. Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 1998, 21, 593–626. [Google Scholar] [CrossRef]
- Shen, H.S.; Wang, Z.X. Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 2012, 94, 2197–2208. [Google Scholar] [CrossRef]
- Correia, V.M.F.; Gomes, M.A.A.; Suleman, A.; Soares, C.M.M.; Soares, C.M. Modelling and design of adaptive composite structures. Comput. Methods Appl. Mech. Eng. 2000, 185, 325–346. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gellat, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Corana, A.; Marchesi, M.; Martini, C.; Ridella, S. Minimizing multimodal functions of continuous variables with the Simulated Annealing algorithm. ACM Trans. Math. Softw. 1987, 13, 262–280. [Google Scholar] [CrossRef]
- Henderson, D.; Jacobson, S.H.; Johnson, A.W. The Theory and Practice of Simulated Annealing. In International Series in Operations Research & Management Science; Glover, F., Kochenberger, G.A., Eds.; Springer: Boston, MA, USA, 2003; Volume 57. [Google Scholar] [CrossRef]
- Goffe, W.L.; Ferrier, G.D.; Rogers, J. Global optimization of statistical functions with simulated annealing. J. Econ. 1994, 60, 65–99. [Google Scholar] [CrossRef] [Green Version]
- Custódio, A.L.; Madeira, J.F.A. GLODS: Global and Local Optimization using Direct Search. J. Glob. Optim. 2014, 62, 1–28. [Google Scholar] [CrossRef]
Materials | Properties | P0 | P−1 | P1 | P2 | P3 |
---|---|---|---|---|---|---|
Aluminum | E (Pa) | 349.55 × 109 | 0 | −3.853 × 10−4 | 4.027 × 10−7 | −1.673 × 10−10 |
oxide | ν | 0.26 | 0 | 0 | 0 | 0 |
(Al2O3) | ρ (kg/m3) | 3800 | 0 | 0 | 0 | 0 |
α (1/K) | 6.8269 × 10−6 | 0 | 1.838 × 10−4 | 0 | 0 | |
κ (W/m K) | −14.087 | −1123.6 | −6.227 × 10−3 | 0 | 0 | |
Silicon Nitride | E (Pa) | 348.43 × 109 | 0 | −3.070 × 10−4 | 2.160 × 10−7 | −8.946 × 10−11 |
(Si3N4) | ν | 0.24 | 0 | 0 | 0 | 0 |
ρ (kg/m3) | 2370 | 0 | 0 | 0 | 0 | |
α (1/K) | 5.8723 × 10−6 | 0 | 9.095 × 10−4 | 0 | 0 | |
κ (W/m K) | 113.723 | 0 | −1.032 × 10−3 | 5.466 × 10−7 | −7.876 × 10−11 | |
Titanium alloy | E (Pa) | 122.56 × 109 | 0 | −4.586 × 10−4 | 0 | 0 |
(Ti-66Al-4V) | ν | 0.2884 | 0 | 1.121 × 10−4 | 0 | 0 |
ρ (kg/m3) | 4429 | 0 | 0 | 0 | 0 | |
α (1/K) | 7.5788 × 10−6 | 0 | 6.638 × 10−4 | −3.147 × 10−7 | 0 | |
κ (W/m K) | 1.0 | 0 | 1.704 × 10−2 | 0 | 0 | |
Stainless steel | E (Pa) | 201.04 × 109 | 0 | 3.079 × 10−4 | −6.534 × 10−7 | 0 |
(SS304) | ν | 0.3262 | 0 | −2.002 × 10−4 | 3.797 × 10−7 | 0 |
ρ (kg/m3) | 8166 | 0 | 0 | 0 | 0 | |
α (1/K) | 12.330 × 10−6 | 0 | 8.086 × 10−4 | 0 | 0 | |
κ (W/m K) | 15.379 | 0 | −1.264 × 10−3 | 2.092 × 10−6 | −7.223 × 10−10 |
XT | XC | S | |
---|---|---|---|
Aluminum Oxide (Al2O3) | 210 | 2200 | 330 |
Silicon Nitride (Si3N4) | 360 | 689 | 207.8 |
Stainless Steel (SUS304) | 215 | 215 | 124 |
Titanium alloy (Ti6Al4V) | 880 | 880 | 550 |
Design Variables | Tsai-Hill Criteria | Mass (kg) | Cost (USD) | ||
---|---|---|---|---|---|
p | |||||
Objective: min Mass | |||||
Simulated Annealing (SA) | 0.2 | 37.8 | 0.999 | 31.5 | 1279 |
Correia et al. [38] | 0.2 | 37.8 | 0.999 | 31.5 | 1279.24 |
Objective: min Cost | |||||
SA | 10 | 20.2 | 0.993 | 38.59 | 227 |
Correia et al. [38] | 10 | 20.2 | 0.993 | 38.59 | 226.65 |
Design Variables | Tsai-Hill Criteria | Mass (kg) | Cost (USD) | ||
---|---|---|---|---|---|
p | |||||
Objective: min Mass | |||||
SA | 0.2 | 34.2 | 0.999 | 38.69 | 886 |
Correia et al. [38] | 0.2 | 34.2 | 0.9991 | 38.69 | 885.75 |
Objective: min Cost | |||||
SA | 2.9 | 53.2 | 0.999 | 93.72 | 752 |
Correia et al. [38] | 2.9 | 53.2 | 1.0 | 93.72 | 752.32 |
Design Variables | Mass (kg) | Cost (USD) | |||
---|---|---|---|---|---|
(mm) | |||||
SA | 3.4 | 59.1 | 8000 | 101.20 | 1076.50 |
Correia et al. [37] | 3.4 | 59.1 | 8000 | 101.20 | 1076.50 |
Moita et al. [33] | 3.8 | 59.5 | 8000 | 103.74 | - |
Design Variables | (10−3 m) | Mass (kg) | Cost (USD) | ||||
---|---|---|---|---|---|---|---|
(mm) | p | ||||||
SUS304/Si3N4 | |||||||
objective: min. Mass | 7.3 | 0 | 2.1331 | 2015 | 3.95 | 197 | S1 |
objective: min. Cost | 15.7 | 10 | 1.0457 | 2010 | 27.37 | 161 | S2 |
SUS304/Al2O3 | |||||||
objective: min. Mass | 9.3 | 0 | 1.5913 | 2003 | 8.06 | 221 | S3 |
objective: min. Cost | 15.8 | 10 | 1.7380 | 2003 | 28.01 | 131 | S4 |
Ti6Al4V/Si3N4 | |||||||
objective: min. Mass | 7.3 | 0 | 2.1331 | 2014 | 3.95 | 197 | S5 |
objective: min. Cost | 7.3 | 0 | 2.1331 | 2014 | 3.95 | 197 | S6 |
Ti6Al4V/Al2O3 | |||||||
objective: min. Mass | 9.3 | 0 | 1.5573 | 2014 | 8.06 | 221 | S7 |
objective: min. Cost | 9.3 | 0 | 1.5573 | 2014 | 8.06 | 221 | S8 |
Design Variables | p | (10−3 m) | Mass (kg) | Cost (USD) | |||||
---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | |||||||
SUS304/Si3N4 | |||||||||
objective: min. Mass | 0 | 6.3 | 1.0 | 0 | 2.2277 | 2014 | 3.95 | 197 | S1′ |
objective: min. Cost | 5.7 | 5.9 | 0.5 | 0 | 1.706 | 2004 | 14.08 | 205 | S2′ |
SUS304/Al2O3 | |||||||||
objective: min. Mass | 0 | 9.3 | 0 | 0 | 1.5631 | 2014 | 8.06 | 221 | S3′ |
objective: min. Cost | 0 | 15.8 | 0 | 10 | 1.7380 | 2003 | 28.01 | 131 | S4′ |
Ti6Al4V/Si3N4 | |||||||||
objective: min. Mass | 0 | 7.3 | 0 | 0 | 2.1952 | 2002 | 3.95 | 197 | S5′ |
objective: min. Cost | 0 | 7.3 | 0 | 0 | 2.1952 | 2002 | 3.95 | 197 | S6′ |
Ti6Al4V/Al2O3 | |||||||||
objective: min. Mass | 0 | 9.3 | 0 | 0 | 1.5997 | 2003 | 8.06 | 221 | S7′ |
objective: min. Cost | 0 | 8.2 | 1.1 | 0 | 1.6054 | 2014 | 8.06 | 221 | S8′ |
Design Variables | δmax (×10−3 mm) | Elastic Strain Energy (J/m2) | Mass (kg) | Cost (USD) |
---|---|---|---|---|
1.8741 | 33.094 | 5.41 | 270.4 | |
Ti6Al4V/Si3N4 and SUS304/Si3N4 | ||||
1.8912 | 3286 | 8.67 | 237.6 | |
SU304/Al2O3 and Ti6Al4V/Al2O3 |
Design Variables | Tsai-Hill Criteria | Elastic Strain Energy (J/m2) | Mass (kg) | Cost (USD) |
---|---|---|---|---|
0.10368 | 47.66 | 7.17 | 298.7 | |
Ti6Al4V/Si3N4 | ||||
0.10425 | 47.88 | 9.01 | 261.5 | |
Ti6Al4V/Al2O3 | ||||
0.27673 | 39.10 | 12.41 | 211.0 | |
SUS304/Al2O3 | ||||
0.27738 | 399 | 10.37 | 296.1 | |
SUS304/Si3N4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco Correia, V.; Moita, J.S.; Moleiro, F.; Soares, C.M.M. Optimization of Metal–Ceramic Functionally Graded Plates Using the Simulated Annealing Algorithm. Appl. Sci. 2021, 11, 729. https://doi.org/10.3390/app11020729
Franco Correia V, Moita JS, Moleiro F, Soares CMM. Optimization of Metal–Ceramic Functionally Graded Plates Using the Simulated Annealing Algorithm. Applied Sciences. 2021; 11(2):729. https://doi.org/10.3390/app11020729
Chicago/Turabian StyleFranco Correia, Victor, José S. Moita, Filipa Moleiro, and Cristóvão M. Mota Soares. 2021. "Optimization of Metal–Ceramic Functionally Graded Plates Using the Simulated Annealing Algorithm" Applied Sciences 11, no. 2: 729. https://doi.org/10.3390/app11020729
APA StyleFranco Correia, V., Moita, J. S., Moleiro, F., & Soares, C. M. M. (2021). Optimization of Metal–Ceramic Functionally Graded Plates Using the Simulated Annealing Algorithm. Applied Sciences, 11(2), 729. https://doi.org/10.3390/app11020729