Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description (Including Vegetation)
2.2. Plant Sampling and Identification
2.3. Reagents
2.4. Plant and Soil Analysis
2.5. Quality Assurance/Quality Control
2.6. Transfer Factor Calculations
3. Results and Discussion
3.1. Trace Elements Concentrations in Plant Species
3.2. Soil-to-Plant Transfer Factors for Trace Elements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massa, N.; Andreucci, F.; Poli, M.; Aceto, M.; Barbato, R.; Berta, G. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicol. Environ. Saf. 2010, 73, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Gorena, T.; Fadic, X.; Cereceda-Balic, F. Cupressus macrocarpa leaves for biomonitoring the environmental impact of an industrial complex: The case of Puchuncaví-Ventanas in Chile. Chemosphere 2020, 260, 127521. [Google Scholar] [CrossRef] [PubMed]
- Ataabadi, M.; Hoodaji, M.; Afi, A. Heavy Metals Biomonitoring by Plants Grown in an Industrial Area of Isfahan’ Mobarakeh Steel Company. J. Environ. Stud. 2010, 35, 83–92. [Google Scholar]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soils; Terry, N., Vangronsveld, J., Banuelos, G., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 85–107. [Google Scholar]
- Mganga, N.; Manoko, M.L.K.; Rulangaranga, Z. Classification of plants according to their heavy metal content around North Mara Gold Mine, Tanzania: Implication for phytoremediation. Tanzan. J. Sci. 2011, 37, 109–119. [Google Scholar]
- Del Río, M.; Font, R.; Almela, C.; Vélez, D.; Montoro, R.; De Haro Bailón, A. Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. J. Biotechnol. 2002, 98, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, Q.; Zheng, D. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci. Total Environ. 2007, 383, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Mihali, C.; Michnea, A.; Oprea, G.; Gogoasa, I.; Pop, C.; Marin Senilă, L.G. Trace element transfer from soil to vegetables around the lead smelter in Baia Mare, NW Romania. J. Food Agric. Environ. 2012, 10, 828–834. [Google Scholar]
- Pastor, J.; Aparicio, A.M.; Gutierrez-Maroto, A.; Hernández, A.J. Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Sci. Total Environ. 2007, 378, 114–118. [Google Scholar] [CrossRef]
- Salmanighabeshi, S.; Palomo-Marín, M.; Bernalte, E.; Rueda-Holgado, F.; Miró-Rodríguez, C.; Fadic-Ruiz, X.; Vidal-Cortez, V.; Cereceda-Balic, F.; Pinilla-Gil, E. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Sci. Total Environ. 2015, 527–528, 335–343. [Google Scholar] [CrossRef]
- Ginocchio, R. Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 2000, 41, 15–23. [Google Scholar] [CrossRef]
- González, I.; Muena, V.; Cisternas, M.; Neaman, A. Copper accumulation in a plant community affected by mining contamination in Puchuncaví valley, central Chile. Rev. Chil. Hist. Nat. 2008, 81, 279–291. [Google Scholar]
- González, I.; Cortes, A.; Neaman, A.; Rubio, P. Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils. Chemosphere 2011, 84, 490–496. [Google Scholar] [CrossRef] [PubMed]
- De Gregori, I.; Lobos, G.; Lobos, S.; Pinochet, H.; Potin-Gautier, M.; Astruc, M. Copper and selenium in rainwater, soils and alfalfa from agricultural ecosystems of Valparaiso region, Chile. Boletín la Soc. Chil. Química 2000, 45. [Google Scholar] [CrossRef]
- Meier, S.; Alvear, M.; Borie, F.; Aguilera, P.; Cornejo, P. Different patterns of organic acid exudation in metallophyte and agricultural plants at increasing copper levels. In Proceedings of the the 19th World Congress of Soil Science; Soil Solutions for a Changing World; Gilkes, R., Prakongkep, N., Gilkes, R., Prakongkep, N., Eds.; International Union of Soil Sciences: Brisbane, Australia, 2010; pp. 17–20. [Google Scholar]
- Muena, V.; González, I.; Neaman, A. Efectos del encalado y la fertilización nitrogenada sobre el desarrollo de Oenothera affinis en un suelo afectado por la minería del cobre. Rev. la Cienc. del suelo y Nutr. Veg. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Cochilco Anuario de Estadísticas del Cobre y Otros Minerales (1994-2013). Available online: https://biblioteca.cchc.cl/datafiles/33546-2.pdf (accessed on 13 December 2016).
- AES Gener Principal. Available online: http://www.gener.cl/Paginas/Principal.aspx (accessed on 13 December 2016).
- Folchi, D.M. Historia Ambiental de las Labores de Beneficio en la Minería del Cobre en Chile, Siglos XIX y XX; Universidad de Barcelona: Barcelona, Spain, 2006. [Google Scholar]
- Ginocchio, R.; Carvallo, G.; Toro, I.; Bustamante, E.; Silva, Y.; Sepúlveda, N. Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environ. Pollut. 2004, 127, 343–352. [Google Scholar] [CrossRef]
- González, I.; Neaman, A.; Rubio, P.; Cortés, A. Spatial distribution of copper and pH in soils affected by intensive industrial activities in Puchuncaví and Quintero, central Chile. J. Soil Sci. Plant Nutr. 2014. [Google Scholar] [CrossRef]
- Parra, S.; Bravo, M.A.; Quiroz, W.; Moreno, T.; Karanasiou, A.; Font, O.; Vidal, V.; Cereceda, F. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere 2014, 111. [Google Scholar] [CrossRef]
- Tang, S.; Wilke, B.M.; Huang, C. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 1999, 209, 225–232. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Bech, J.; Llugany, M.; Pace, A.; Fenés, E.; Barceló, J. Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant Soil 2001, 230, 247–256. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H.; Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 2005, 337, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kassaye, Y.A.; Skipperud, L.; Meland, S.; Dadebo, E.; Einset, J.; Salbu, B. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas. J. Environ. Monit. 2012, 14, 2698. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ding, C.; Li, X.; Zhang, T.; Wang, X. Heavy metals in navel orange orchards of Xinfeng County and their transfer from soils to navel oranges. Ecotoxicol. Environ. Saf. 2015, 122, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Bakhat, H.F.; Zia, Z.; Abbas, S.; Hammad, H.M.; Shah, G.M.; Khalid, S.; Shahid, N.; Sajjad, M.; Fahad, S. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundw. Sustain. Dev. 2019, 9, 100263. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Palomo-Marín, M.R.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Fractionation of trace elements in total atmospheric deposition by filtrating-bulk passive sampling. Talanta 2014, 125. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. A semiautomatic system for soluble lead and copper monitoring in atmospheric deposition by coupling of passive elemental fractionation sampling and voltammetric measurement on screen-printed gold electrodes. Microchem. J. 2016, 124. [Google Scholar] [CrossRef]
- Rueda-Holgado, F.; Calvo-Blázquez, L.; Cereceda-Balic, F.; Pinilla-Gil, E. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils. Chemosphere 2016, 144. [Google Scholar] [CrossRef]
- CCME Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Available online: https://www.esdat.net/environmental%20standards/canada/soil/rev_soil_summary_tbl_7.0_e.pdf (accessed on 25 November 2020).
- Australian Department of Environment and Conservation Assessment Level for Soil, Sediment and Water. Available online: https://www.esdat.net/EnvironmentalStandards/Australia/WA/AssessmentLevels-2010.pdf (accessed on 18 September 2020).
- Ministry of Housing Spatial Planning and the Environment (Netherlands) Circular on Target Values and Intervention Values for Soil Remediation. Available online: https://www.esdat.net/EnvironmentalStandards/Dutch/annexS_I2000DutchEnvironmentalStandards.pdf (accessed on 12 September 2020).
- Wei, S.; Zhou, Q.; Wang, X. Identification of weed plants excluding the uptake of heavy metals. Environ. Int. 2005, 31. [Google Scholar] [CrossRef]
- Afonso, T.F.; Demarco, C.F.; Pieniz, S.; Quadro, M.S.; Camargo, F.A.O.; Andreazza, R. Bioprospection of indigenous flora grown in copper mining tailing area for phytoremediation of metals. J. Environ. Manag. 2020, 256. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Agrawal, M. Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Appl. Geochem. 2019, 104. [Google Scholar] [CrossRef]
- Al-Qahtani, K. Assessment of Heavy Metals Accumulation in Native Plant Species from Soils Contaminated in Riyadh City, Saudi Arabia. Life Sci. J. 2012, 9, 384–392. [Google Scholar]
- Badr, N.; Fawzy, M.; Al-Qahtani, K. Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Appl. Sci. J. 2012, 16, 1292–1301. [Google Scholar]
- Chaffee, M.A.; Berry, K.H. Abundance and distribution of selected elements in soils, stream sediments, and selected forage plants from desert tortoise habitats in the Mojave and Colorado deserts, USA. J. Arid Environ. 2006, 67. [Google Scholar] [CrossRef] [Green Version]
- Wetl, R.; Bensko-Tarsitano, B.; Johnson, K.; Sweat, K.G.; Cahill, T. Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. J. Environ. Radioact. 2020, 220‒221, 106293. [Google Scholar] [CrossRef]
Elements | SRM | Certified Values (mg kg−1) ± SD | Measured Concentration (mg kg−1) ± SD |
---|---|---|---|
Cr | NIST 1573a | 1.99 ± 0.06 | 1.44 ± 0.13 |
Mn | NIST 1573a | 246 ± 8 | 199 ± 12 |
BCR 281 | 81.6 ± 2.6 | 62.6 ± 0.1 | |
Ni | NIST 1573a | 1.59 ± 0.07 | 1.74 ± 0.12 |
BCR 281 | 3.00 ± 0.17 | 2.25 ± 0.003 | |
Cu | NIST 1573a | 4.70 ± 0.14 | 4.03 ± 0.25 |
BCR 281 | 9.65 ± 0.68 | 9.17 ± 0.02 | |
Zn | NIST 1573a | 30.9 ± 0.7 | 35.5 ± 3.08 |
As | NIST 1573a | 0.112 ± 0.004 | 0.24 ± 0.03 |
BCR 281 | 0.057 ± 0.004 | 0.095 ± 0.00 | |
Cd | NIST 1573a | 1.52 ± 0.04 | 1.77 ± 0.20 |
BCR 281 | 0.120 ± 0.003 | 0.165 ± 0.000 | |
Pb | BCR 281 | 2.38 ± 0.11 | 2.71 ± 0.00 |
Sb | NIST 1573a | 0.063 ± 0.006 | 0.088 ± 0.008 |
BCR 281 | 0.047 ± 0.005 | 0.062 ± 0.000 | |
V | NIST 1573a | 0.835 ± 0.01 | 0.879 ± 0.05 |
Co | NIST 1573a | 0.57 ± 0.02 | 0.38 ± 0.10 |
Elements | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | Sb | V | Co | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration(mg kg−1) | Non–toxic | 0.1–0.5 | 30–300 | 0.1–5 | 5–30 | 27–150 | 1–1.7 | 0.05–0.2 | 5–10 | 7–50 | 0.2–1.5 | 0.02–1 |
Toxic | 5–30 | 400–1000 | 10–100 | 20–100 | 100–400 | 5–20 | 5–30 | 30–300 | 150.00 | 5–10 | 15–50 | |
Hyperaccumulation Limit | 1000 | 10,000 | 1000 | 1000 | 10,000 | - | 100 | 1000 | - | - | 1000 | |
Species | Location | Concentrations (mg kg−1) | ||||||||||
O. picensis (OP) | LM | 30.64–35.46 (33.77) | 83.67–99.24 (92.34) | 19.70–21.68 (21.00) | 467.92–548.44 (507.77) | 55.24–66.66 (60.35) | 20.52–25.17 (22.47) | 0.36–0.45 (0.40) | 34.03–78.84 (49.64) | 3.65–5.07 (4.17) | 11.78–14.44 (13.29) | 2.03–2.22 (2.11) |
LG | 23.01–26.16 (24.95) | 114.99–126.46 (120.70) | 16.26–17.90 (17.24) | 390.53–407.94 (399.41) | 115.46–119.26 (117.87) | 11.42–12.93 (12.01) | 0.30–0.33 (0.31) | 11.36–12.73 (11.99) | 1.60–2.19 (1.84) | 7.51–8.92 (8.15) | 1.38–1.67 (1.49) | |
LG (leaves) | 8.99–9.63 (9.20) | 117.09–127.71 (123.66) | 9.06–9.83 (9.40) | 190.34–204.99 (196.53) | 135.01–142.57 (138.84) | 3.36–4.03 (3.80) | 0.27–0.29 (0.28) | 5.55–6.07 (5.80) | 0.56–0.64 (0.60) | 1.23–1.27 (1.25) | 0.48–0.59 (0.52) | |
CH | 0.82–1.27 (1.02) | 52.71–60.55 (56.80) | 1.20–1.47 (1.30) | 12.52–14.99 (13.51) | 31.46–35.08 (33.34) | 0.49–0.64 (0.58) | 0.03–0.03 (0.03) | 1.06–1.14 (1.11) | 0.08–0.09 (0.09) | 1.83–2.30 (2.02) | 0.28–0.42 (0.35) | |
S. velutina (SV) | LM | 20.73–21.80 (21.23) | 68.90–73.29 (71.56) | 12.85–13.97 (13.40) | 347.95–364.70 (355.22) | 66.54–69.88 (68.63) | 12.75–14.24 (13.70) | 0.41–0.45 (0.43) | 17.96–19.10 (18.47) | 2.05–2.11 (2.07) | 4.00–4.11 (4.06) | 1.02–1.11 (1.05) |
CH | 23.48–25.52 (24.42) | 63.95–70.14 (67.05) | 14.07–15.07 (14.58) | 14.40–15.43 (14.84) | 30.92–36.47 (33.38) | 0.46–0.52 (0.49) | 0.12–0.13 (0.12) | 0.82–1.57 (1.09) | 0.09–0.10 (0.10) | 0.89–0.92 (0.91) | 0.41–0.52 (0.47) | |
A. subfusiformis (AS) | LM | 6.72–7.10 (6.91) | 24.33–26.88 (25.90) | 4.81–5.05 (4.97) | 33.67–40.02 (36.52) | 43.40–47.75 (45.90) | 1.48–1.61 (1.52) | 0.06–0.09 (0.07) | 1.99–8.55 (6.34) | 0.25–0.35 (0.28) | 0.47–0.51 (0.49) | 0.13–0.38 (0.23) |
VA | 49.02–63.31 (55.72) | 47.22–52.03 (49.56) | 30.16–41.19 (35.35) | 13.20–14.03 (13.75) | 27.51–33.16 (30.16) | 0.26–0.39 (0.33) | 0.06–0.10 (0.08) | 0.74–4.20 (1.97) | 0.06–0.09 (0.07) | 0.40–0.42 (0.41) | 0.82–0.98 (0.88) |
Location | pH | Organic Matter (%) | C.E.C * (meq 100 g−1) | Sand/Silt/Clay (%) | Mean Concentrations of Element in Soil (mg kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | Sb | V | Co | |||||
LM | 5.3 | 0.34 | 2.88 | 82/3/15 | 22.6 | 817.3 | 9.7 | 465.5 | 123.6 | 16.6 | 1.81 | 13.9 | 9.6 | 109.8 | 10.8 |
LG | 5.0 | 1.40 | 4.96 | 83/2/15 | 18.2 | 335.6 | 7.2 | 685.9 | 239.7 | 49.0 | 1.78 | 42.0 | 7.0 | 104.1 | 6.4 |
VA | 6.0 | 7.73 | 14.70 | 72/5/23 | 38.7 | 1888.2 | 16.0 | 224.1 | 166.6 | 10.9 | 1.06 | 21.8 | 4.3 | 121.0 | 26.6 |
CH | 7.3 | 5.65 | 6.88 | 67/8/25 | 32.0 | 977.5 | 11.9 | 52.2 | 144.7 | 18.9 | 0.64 | 19.9 | 1.0 | 107.8 | 12.9 |
Reference Soil Quality Standards | |||||||||||||||
Canada [35] | 87 | - | 50 | 91 | 360 | - | 22 | 600 | - | 130 | - | ||||
Australia [36] | - | 60 | 100 | 200 | 20 | 3 | 1500 | - | 50 | - | |||||
Netherlands [37] | 380 | - | 210 | 190 | 720 | 55 | 12 | 530 | 15 | 0 | 240 |
Species | Location | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | Sb | V | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|
O. picensis (OP) | LM | 1.671 | 0.113 | 2.165 | 1.091 | 0.488 | 1.354 | 0.219 | 3.571 | 0.433 | 0.121 | 0.195 |
LG | 1.371 | 0.360 | 2.394 | 0.582 | 0.492 | 0.245 | 0.177 | 0.285 | 0.264 | 0.078 | 0.233 | |
CH | 0.032 | 0.058 | 0.109 | 0.259 | 0.230 | 0.031 | 0.047 | 0.056 | 0.092 | 0.019 | 0.027 | |
S. velutina (SV) | LM | 0.939 | 0.088 | 1.381 | 0.763 | 0.555 | 0.825 | 0.237 | 1.329 | 0.216 | 0.037 | 0.097 |
CH | 0.763 | 0.069 | 1.225 | 0.284 | 0.231 | 0.026 | 0.191 | 0.055 | 0.101 | 0.008 | 0.036 | |
A. subfusiformis (AS) | LM | 0.306 | 0.032 | 0.512 | 0.078 | 0.371 | 0.092 | 0.041 | 0.456 | 0.029 | 0.005 | 0.021 |
VA | 1.440 | 0.026 | 2.209 | 0.061 | 0.181 | 0.030 | 0.073 | 0.090 | 0.018 | 0.003 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmani-Ghabeshi, S.; Fadic-Ruiz, X.; Miró-Rodríguez, C.; Pinilla-Gil, E.; Cereceda-Balic, F. Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential. Appl. Sci. 2021, 11, 713. https://doi.org/10.3390/app11020713
Salmani-Ghabeshi S, Fadic-Ruiz X, Miró-Rodríguez C, Pinilla-Gil E, Cereceda-Balic F. Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential. Applied Sciences. 2021; 11(2):713. https://doi.org/10.3390/app11020713
Chicago/Turabian StyleSalmani-Ghabeshi, Soroush, Ximena Fadic-Ruiz, Conrado Miró-Rodríguez, Eduardo Pinilla-Gil, and Francisco Cereceda-Balic. 2021. "Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential" Applied Sciences 11, no. 2: 713. https://doi.org/10.3390/app11020713
APA StyleSalmani-Ghabeshi, S., Fadic-Ruiz, X., Miró-Rodríguez, C., Pinilla-Gil, E., & Cereceda-Balic, F. (2021). Trace Element Levels in Native Plant Species around the Industrial Site of Puchuncaví-Ventanas (Central Chile): Evaluation of the Phytoremediation Potential. Applied Sciences, 11(2), 713. https://doi.org/10.3390/app11020713