Spatial Mobility of U and Th in a U-enriched Area (Central Portugal)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Geochemistry of Stream Sediments and Soils
3.2. Contamination Indexes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milvy, P.; Cothern, C.R. Scientific Background for the Development of Regulations for Radionuclides in Drinking Water. In Radon, Radium and Uranium in Drinking Water; Cothern, C.R., Rebers, P., Eds.; Lewis Publishers: Chelsea, MI, USA, 1990; pp. 1–16. [Google Scholar]
- EFSA—European Food Safety Authority. Uranium in food tuffs, in particular mineral water. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2009, 1018, 1–59. [Google Scholar]
- Antunes, I.; Neiva, A.; Albuquerque, M.; Carvalho, P.C.S.; Santos, A.C.T.; Cunha, P.P. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal). Environ. Geochem. Health 2017, 40, 521–542. [Google Scholar] [CrossRef]
- Arogunjo, A.; Höllriegl, V.; Giussani, A.; Leopold, K.; Gerstmann, U.; Veronese, I.; Oeh, U. Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J. Environ. Radioact. 2009, 100, 232–240. [Google Scholar] [CrossRef]
- Dittmar, M. The end of cheap uranium. Sci. Total Environ. 2013, 461, 792–798. [Google Scholar] [CrossRef]
- Falck, W.E. The Long-Term Safety of Uranium Mine and Mill Tailings Legacies in an Enlarged EU; JCR Scientific and Technical Report #49047; Office for the Official Publications of the European Communities: Luxembourg, Germany, 2008; p. 33. [Google Scholar]
- Raeva, D.; Slavov, T.; Stoyanova, D.; Zivčič, L.; Tkalec, T.; Rode, Š. Expanded Nuclear Power capacity in Europe, Impact of Uranium mining and alternatives. EJOLT Rep. 2014, 12, 129. [Google Scholar]
- World Nuclear Association. Supply of Uranium. Available online: http://www.world-nuclear.org/info/inf75.html2015 (accessed on 24 September 2020).
- Brugge, D.; Buchner, V. Health effects of uranium: New research findings. Rev. Environ. Health 2011, 26, 231–249. [Google Scholar] [CrossRef]
- Cuvier, A.; Panza, F.; Pourcelot, L.; Foissard, B.; Cagnat, X.; Prunier, J.; Van Beek, P.; Souhaut, M.; Le Roux, G. Uranium decay daughters from isolated mines: Accumulation and sources. J. Environ. Radioact. 2015, 149, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.; Mazur, J.; Vaupotič, J.; Grządziel, D.; Kobal, I.; Omran, K.M. The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland. Isot. Environ. Health Stud. 2013, 49, 274–282. [Google Scholar] [CrossRef]
- Neiva, A.; Carvalho, P.C.S.; Antunes, I.; Silva, M.M.V.G.; Santos, A.; Pinto, M.M.S.C.; Cunha, P.P. Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. J. Geochem. Explor. 2014, 136, 102–117. [Google Scholar] [CrossRef]
- Foulkes, M.; Millward, G.E.; Henderson, S.; Blake, W. Bioaccessibility of U, Th and Pb in solid wastes and soils from an abandoned uranium mine. J. Environ. Radioact. 2017, 173, 85–96. [Google Scholar] [CrossRef]
- Villa, M.; Manjón, G.; Hurtado-Bermúdez, S.; García-Tenorio, R.; Villa-Alfageme, M. Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occurring radioactive materials. Mar. Pollut. Bull. 2011, 62, 1521–1529. [Google Scholar] [CrossRef]
- White, P.A.F.; Smith, S.E. Review of uranium ore processing research. J. Br. Nucl. Energy Soc. 1969, 8, 93–102. [Google Scholar]
- Kaksonen, A.H.; Lakaniemi, A.-M.; Tuovinen, O.H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Clean. Prod. 2020, 264, 121586. [Google Scholar] [CrossRef]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef]
- IPMA. Instituto Português do Mar e da Atmosfera. Clima de Portugal Continental. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 16 August 2020).
- SNIRH, Sistema Nacional de Informação de Recursos Hídricos. Available online: https://snirh.apambiente.pt/index.php?idMain=1&idItem=1.1 (accessed on 10 September 2020).
- British Standard (BS) 7755. Soil Quality, Part 3. Chemical Methods, Section 3.2. Determination of pH; ISSO 10390; British Standards Institution: Glasgow, UK, 1995; p. 1. [Google Scholar]
- British Standard (BS) 7755. Soil Quality, Part 3. Chemical Methods, Section 3.4. Determination of Specific Electrical Conductivity; ISSO 11265; British Standards Institution: Glasgow, UK, 1995; p. 1. [Google Scholar]
- User Manual. Jobin Yvon ICP Spectometers. Version 3.0; Reference: 31088486. 2001, pp. 20–23. Available online: https://www.horiba.com/cn/scientific/products/optical-spectroscopy/newsletter/october-2009/find-out-about-our-latest-spectroscopy-software-synerj (accessed on 13 October 2020).
- Antunes, I.; Albuquerque, M.; Roque, N. Spatial environmental risk evaluation of potential toxic elements in stream sediments. Environ. Geochem. Health 2018, 40, 2573–2585. [Google Scholar] [CrossRef]
- Antunes, I.; Gomes, M.; Neiva, A.; Carvalho, P.; Santos, A. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W > Sn mine (NE Portugal). Ecotoxicol. Environ. Saf. 2016, 133, 135–145. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for aquatic pollution control—A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wenyl, H.; Fengru, H.; Jingsheng, C. Comparative study of assessment method for river particulate heavy metal pollution. Sci. Geogr. Sinca 1997, 17, 81–86. [Google Scholar]
- Vreča, P.; Dolenec, T. Geochemical estimation of copper contamination in the healing mud from Makirina Bay, central Adriatic. Environ. Int. 2005, 31, 53–61. [Google Scholar] [CrossRef]
- Karydas, C.G.; Tzoraki, O.A.; Panagos, P. A New Spatiotemporal Risk Index for Heavy Metals: Application in Cyprus. Water 2015, 7, 4323–4342. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Earth Sci. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Andrews, S.; Sutherland, R.; Sutherland, R.A. Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii. Sci. Total Environ. 2004, 324, 173–182. [Google Scholar] [CrossRef]
- Ferreira, A.M.P.J. Dados Geoquímicos de Base de Sedimentos Fluviais de Amostragem de Baixa Densidade de Portugal Continental: Estudo de Factores de Variação Regional. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2000. [Google Scholar]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M. FOREGS Geochemical Atlas of Europe, Methodology and Maps; Part 1–526p and Part 2–690p; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Canadian Soil Guidelines. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; 2017; Summary tables 1–6. Available online: https://www.ccme.ca/files/ceqg/en/backup/250-081209115239.pdf (accessed on 13 October 2020).
Accuracy | Precision | |
---|---|---|
Concentration Relatively to Detection Limit (DL) | ||
<3 DL | ≤0.024 | 0.031 |
>3 DL | ≤0.015 | 0.018 |
pH | EC | OM | Fe | Mn | Cr | Cu | Zn | As | Cs | Zr | Ba | REE | W | Pb | Th | U | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | % | mg/kg | ||||||||||||||||
Stream sediments_upstream | Median | 6.04 | 22.60 | 1.67 | 1.85 | 0.05 | 4.95 | 17.77 | 90.63 | 18.31 | 19.22 | 0.68 | 30.74 | 262.73 | 1.26 | 18.01 | 25.56 | 131.86 |
Minimum | 5.99 | 12.70 | 0.79 | 1.61 | 0.03 | 4.14 | 11.48 | 81.34 | 13.70 | 17.29 | 0.34 | 23.09 | 218.30 | 1.05 | 12.98 | 20.96 | 102.48 | |
Maximum | 6.13 | 34.20 | 2.64 | 1.98 | 0.07 | 5.58 | 21.34 | 102.08 | 22.53 | 21.42 | 0.96 | 35.40 | 327.12 | 1.62 | 22.02 | 30.26 | 182.75 | |
St deviation | 0.08 | 10.85 | 0.93 | 0.20 | 0.02 | 0.74 | 5.46 | 10.54 | 4.43 | 2.08 | 0.31 | 6.67 | 57.09 | 0.32 | 4.61 | 4.65 | 44.25 | |
N | 3 | |||||||||||||||||
Stream sediments_downstream | Median | 5.92 | 55.16 | 2.59 | 1.58 | 0.03 | 9.29 | 17.01 | 108.06 | 13.24 | 8.86 | 0.49 | 30.10 | 234.19 | 2.00 | 23.15 | 18.97 | 87.70 |
Minimum | 4.40 | 25.10 | 1.02 | 1.33 | 0.02 | 3.14 | 3.70 | 64.34 | 4.04 | 7.41 | 0.12 | 10.78 | 177.13 | 0.56 | 9.60 | 8.95 | 19.01 | |
Maximum | 6.42 | 154.20 | 5.82 | 1.97 | 0.06 | 13.76 | 30.27 | 157.14 | 35.88 | 13.74 | 3.45 | 47.70 | 355.99 | 4.76 | 31.78 | 32.02 | 454.04 | |
St deviation | 0.56 | 35.85 | 1.35 | 0.24 | 0.01 | 3.04 | 7.52 | 28.81 | 8.99 | 1.73 | 0.98 | 9.67 | 50.00 | 1.36 | 6.90 | 6.94 | 125.78 | |
N | 11 | |||||||||||||||||
Soil_background | Median | 5.36 | 23.12 | 2.99 | 1.98 | 0.05 | 6.20 | 30.84 | 91.34 | 15.34 | 25.56 | 0.93 | 39.18 | 303.98 | 1.03 | 18.43 | 38.14 | 50.14 |
Minimum | 5.09 | 12.80 | 2.13 | 1.51 | 0.03 | 4.59 | 7.06 | 73.27 | 11.18 | 10.52 | 0.36 | 23.46 | 265.76 | 0.61 | 13.97 | 29.22 | 13.06 | |
Maximum | 5.73 | 12.80 | 4.33 | 2.43 | 0.08 | 7.95 | 171.41 | 109.65 | 38.06 | 61.53 | 2.38 | 59.72 | 401.90 | 1.63 | 22.89 | 51.00 | 195.59 | |
St deviation | 0.22 | 39.92 | 0.76 | 0.34 | 0.02 | 1.13 | 59.83 | 13.56 | 9.07 | 17.84 | 0.74 | 13.39 | 57.02 | 0.39 | 3.08 | 6.71 | 59.57 | |
N | 7 | |||||||||||||||||
Soil_mine influence | Median | 5.25 | 26.64 | 4.51 | 1.93 | 0.03 | 6.39 | 11.27 | 80.73 | 24.87 | 12.50 | 1.24 | 29.39 | 282.12 | 1.23 | 18.99 | 30.33 | 168.27 |
Minimum | 4.71 | 10.70 | 1.81 | 1.53 | 0.02 | 3.38 | 3.07 | 57.97 | 4.68 | 3.49 | 0.23 | 12.97 | 223.56 | 0.54 | 9.08 | 15.81 | - | |
Maximum | 5.95 | 91.80 | 9.57 | 2.53 | 0.05 | 13.36 | 41.46 | 134.86 | 60.48 | 20.52 | 9.55 | 55.00 | 417.48 | 2.93 | 32.80 | 54.80 | 1561.06 | |
St deviation | 0.32 | 16.01 | 2.03 | 0.26 | 0.01 | 2.51 | 10.15 | 17.90 | 14.69 | 3.35 | 1.87 | 10.10 | 43.71 | 0.55 | 5.51 | 10.01 | 329.31 | |
N | 33 | |||||||||||||||||
Mine dumps | Median | 5.46 | 16.36 | 1.76 | 2.54 | 0.05 | 5.24 | 9.84 | 90.66 | 66.12 | 9.65 | 5.57 | 14.00 | 320.30 | 6.69 | 18.14 | 45.30 | 2318.62 |
Minimum | 4.34 | 9.10 | 0.89 | 1.70 | 0.02 | 3.56 | 4.76 | 63.16 | 24.61 | 2.51 | 0.73 | 7.00 | 232.28 | 1.19 | 11.38 | 21.19 | 132.45 | |
Maximum | 6.36 | 41.00 | 5.96 | 4.26 | 0.09 | 7.94 | 16.47 | 121.71 | 171.16 | 20.73 | 10.59 | 24.07 | 399.06 | 20.27 | 70.66 | 62.71 | 4540.06 | |
St deviation | 0.57 | 8.80 | 1.45 | 0.64 | 0.01 | 1.44 | 3.37 | 13.58 | 37.66 | 4.58 | 2.71 | 4.60 | 46.65 | 6.36 | 14.25 | 10.01 | 1188.03 | |
N | 16 |
Mine Dumps | Stream Sediments | |||||
---|---|---|---|---|---|---|
Min | Max | Med | Min | Max | Med | |
Fe | 0.9 | 2.3 | 1.4 | 0.7 | 1.1 | 0.9 |
Mn | 0.5 | 1.7 | 1.0 | 0.4 | 1.4 | 0.7 |
Ba | 0.2 | 0.8 | 0.5 | 0.4 | 1.6 | 1.0 |
Cr | 0.3 | 0.9 | 0.6 | 0.2 | 1.7 | 1.0 |
Zn | 0.7 | 1.6 | 1.1 | 0.6 | 2.8 | 1.7 |
Pb | 0.6 | 3.9 | 1.0 | 0.5 | 1.8 | 1.2 |
As | 1.3 | 9.3 | 3.6 | 0.2 | 2.0 | 0.8 |
W | 0.9 | 16.1 | 5.3 | 0.4 | 3.8 | 1.5 |
U | 1.0 | 34.4 | 17.6 | 0.1 | 3.4 | 0.7 |
Th | 0.8 | 2.5 | 1.8 | 0.4 | 1.3 | 0.8 |
CD | 11.6 | 54.1 | 34.7 | 8.7 | 14.5 | 11.4 |
Canto Lagar Area | Geochemical Atlas of Europe | |||||
---|---|---|---|---|---|---|
Minimum | Maximum | Median | Minimum | Maximum | Median | |
Fe | 1.3 | 4.3 | 1.8 | 0.06 | 20.0 | 1.97 |
Mn | 0.0 | 0.1 | 0.0 | 24.0 | 18900 | 452 |
Cr | 3.1 | 13.8 | 5.2 | 2.0 | 1750 | 21.0 |
Cu | 3.7 | 30.3 | 17.0 | 1.0 | 998 | 14.0 |
Zn | 63.2 | 157.1 | 90.7 | 7.0 | 11.0 | 60.0 |
As | 4.0 | 171.2 | 18.3 | <5 | 231.0 | 6.0 |
W | 0.6 | 20.3 | 2.0 | <0.05 | 82.0 | 1.2 |
Pb | 9.6 | 70.7 | 18.1 | <3 | 4880 | 14.0 |
Th | 8.9 | 62.7 | 25.6 | <1 | 13.9 | 253 |
U | 19.0 | 4540.1 | 131.9 | <1 | 98.0 | 2.0 |
Canto Lagar | Geochemical Atlas of Europe | Canadian Soil Guidelines | ||||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Median | Minimum | Maximum | Median | Agricultural | Residential Parkland | |
Fe | 1.51 | 2.53 | 1.96 | 0.1 | 15.2 | 1.96 | - | - |
Mn | 0.02 | 0.08 | 0.04 | <10 | 6480 | 382 | - | - |
Cr | 3.38 | 13.36 | 6.30 | 1 | 2340 | 22 | 64 | 64 |
Cu | 3.07 | 171.41 | 21.06 | <1 | 118 | 13 | 63 | 63 |
Zn | 57.97 | 134.86 | 86.04 | 4 | 2270 | 48 | 200 | 200 |
As | 4.68 | 60.48 | 20.11 | 5 | 220 | 6 | 12 | 12 |
Cs | 3.49 | 61.53 | 19.03 | <0.5 | 69.1 | 3.71 | - | - |
Zr | 0.23 | 9.55 | 1.09 | 5 | 1060 | 231 | - | - |
Ba | 12.97 | 59.72 | 34.29 | 10 | 1700 | 65 | 750 | 500 |
W | 0.54 | 2.93 | 1.13 | <5 | 14 | <5 | - | - |
Pb | 9.08 | 32.8 | 18.71 | <3 | 15 | 886 | 70 | 140 |
Th | 15.81 | 54.8 | 34.24 | 0.3 | 75.9 | 7.24 | - | - |
U | - | 1561.06 | 109.2 | 0.2 | 53.2 | 2.03 | 23 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.; Santos, A.; Valente, T.; Albuquerque, T. Spatial Mobility of U and Th in a U-enriched Area (Central Portugal). Appl. Sci. 2020, 10, 7866. https://doi.org/10.3390/app10217866
Antunes M, Santos A, Valente T, Albuquerque T. Spatial Mobility of U and Th in a U-enriched Area (Central Portugal). Applied Sciences. 2020; 10(21):7866. https://doi.org/10.3390/app10217866
Chicago/Turabian StyleAntunes, Margarida, António Santos, Teresa Valente, and Teresa Albuquerque. 2020. "Spatial Mobility of U and Th in a U-enriched Area (Central Portugal)" Applied Sciences 10, no. 21: 7866. https://doi.org/10.3390/app10217866
APA StyleAntunes, M., Santos, A., Valente, T., & Albuquerque, T. (2020). Spatial Mobility of U and Th in a U-enriched Area (Central Portugal). Applied Sciences, 10(21), 7866. https://doi.org/10.3390/app10217866