Selection of Features Based on Electric Power Quantities for Non-Intrusive Load Monitoring
Abstract
:1. Introduction
- different power terms, accounting for possible distortion in the voltage and current signals, have been considered as possible features;
- the power terms have been evaluated in different time intervals after the detected event;
- a systematic approach to rapidly obtain the lowest possible number of features preserving model performance has been explored applying two procedures of feature selection.
2. Feature Definition
- the fundamental component, typically denoted with the subscript 1, that is a sinusoidal signal at system frequency f1:
- the remaining term, typically denoted with the subscript H, which is obtained by summing up the sinusoids of all the harmonics and the possible dc component.
3. Database Creation
3.1. BLUED
3.2. Signal Processing
4. The Multilayer Perceptron
5. Feature Selection
6. Performance Indexes
7. Test and Results
7.1. Feature Selection
7.2. Load Classification Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hart, G.W. Nonintrusive Appliance Load Monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- Hosseini, S.; Agbossou, K.; Kelouwani, S.; Cardenas, A. Non-Intrusive Load Monitoring through Home Energy Management Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 79, 1266–1274. [Google Scholar] [CrossRef]
- Ruano, A.E.; Hernández, Á.; Ureña, J.; Ruano, M.G.; Garcia, J. NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.-C.; Li, M.-W.; Fan, G.-F. Short-Term Load Forecasting by Artificial Intelligent Technologies; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Welikala, S.; Dinesh, C.; Ekanayake, M.P.B.; Godaliyadda, R.I.; Ekanayake, J. Incorporating Appliance Usage Patterns for Non-Intrusive Load Monitoring and Load Forecasting. IEEE Trans. Smart Grid 2019, 10, 448–461. [Google Scholar] [CrossRef]
- Dinesh, C.; Makonin, S.; Bajić, I.V. Residential Power Forecasting Using Load Identification and Graph Spectral Clustering. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1900–1904. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.; Wang, B.; Zhao, J.; Huang, J. A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep Learning and Post-Processing. IEEE Trans. Smart Grid 2020, 11, 148–160. [Google Scholar] [CrossRef]
- Harell, A.; Makonin, S.; Bajic, I. Wavenilm: A Causal Neural Network for Power Disaggregation from the Complex Power Signal. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8335–8339. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wang, F. Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background. Energies 2019, 12, 1572. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.; Dennis, J.; Hansom, J.; Martin, W.; Stankevicius, A.; Ward, L. Deep Neural Networks for Appliance Transient Classification. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8320–8324. [Google Scholar] [CrossRef]
- Bucci, G.; Ciancetta, F.; Fiorucci, E.; Mari, S. Load Identification System for Residential Applications Based on the NILM Technique. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Djordjevič, S.; Simic, M. Nonintrusive Identification of Residential Appliances Using Harmonic Analysis. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 780–791. [Google Scholar] [CrossRef]
- Djordjevič, S.; Dimitrijević, M.; Litovski, V. A Non-Intruive Identification of Home Appliances Using Active Power and Harmonic Current. FACTA Univ. Electron. Energ. 2017, 30. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Ming, H.; Shakkottai, S.; Xie, L.; Yao, J. Nonintrusive Load Monitoring in Residential Households with Low-Resolution Data. Appl. Energy 2019, 252, 113283. [Google Scholar] [CrossRef]
- Devarapalli, H.P.; Dhanikonda, V.S.S.S.S.; Gunturi, S.B. Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion. Energies 2020, 13, 4628. [Google Scholar] [CrossRef]
- Faustine, A.; Pereira, L. Multi-Label Learning for Appliance Recognition in NILM Using Fryze-Current Decomposition and Convolutional Neural Network. Energies 2020, 13, 4154. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, L.; Li, F.; Liu, Q.; Li, D.; Fu, Y. A Nonintrusive Load Identification Method for Residential Applications Based on Quadratic Programming. Electr. Power Syst. Res. 2016, 133, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Ng, S.K.K.; Kendall, G.; Cheng, J.W.M. Load Signature Study—Part I: Basic Concept, Structure, and Methodology. IEEE Trans. Power Deliv. 2010, 25, 551–560. [Google Scholar] [CrossRef]
- Gao, J.; Kara, E.C.; Giri, S.; Bergés, M. A Feasibility Study of Automated Plug-Load Identification from High-Frequency Measurements. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 220–224. [Google Scholar]
- Sadeghianpourhamami, N.; Ruyssinck, J.; Deschrijver, D.; Dhaene, T.; Develder, C. Comprehensive Feature Selection for Appliance Classification in NILM. Energy Build. 2017, 151, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Giri, S.; Kara, E.C.; Bergés, M. PLAID: A Public Dataset of High-Resoultion Electrical Appliance Measurements for Load Identification Research: Demo Abstract. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis, TN, USA, 4–6 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 198–199. [Google Scholar]
- Liu, H.; Zou, Q.; Zhang, Z. Energy Disaggregation of Appliances Consumptions Using HAM Approach. IEEE Access 2019, 7, 185977–185990. [Google Scholar] [CrossRef]
- Anderson, K.; Ocneanu, A.; Benitez, D.; Carlson, D.; Rowe, A.; Berges, M. BLUED: A Fully Labeled Public Dataset for Event-Based Non-Intrusive Load Monitoring Research. In Proceedings of the 2nd KDD workshop on data mining applications in sustainability (SustKDD), Beijing, China, 12–16 August 2012; pp. 1–5. [Google Scholar]
- Taveira, P.R.Z.; Moraes, C.H.V.D.; Lambert-Torres, G. Non-Intrusive Identification of Loads by Random Forest and Fireworks Optimization. IEEE Access 2020, 8, 75060–75072. [Google Scholar] [CrossRef]
- IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. IEEE Std 1459-2010 Revis. 2010, 1–50. [CrossRef] [Green Version]
- Møller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Goldberger, J.; Roweis, S.; Hinton, G.; Salakhutdinov, R. Neighbourhood Components Analysis, Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2005; pp. 513–520. [Google Scholar]
- Yang, W.; Wang, K.; Zuo, W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012, 7, 161–168. [Google Scholar] [CrossRef]
- Ding, C.; Peng, H. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Cannas, B.; Canetto, B.; Carcangiu, S.; Fanni, A.; Fresi, L.; Marceddu, M.; Muscas, C.; Porcu, P.; Sias, G. Non-Intrusive Loads Monitoring Techniques for House Energy Management. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–6. [Google Scholar]
- Cannas, B.; Carcangiu, S.; Carta, D.; Fanni, A.; Muscas, C.; Sias, G.; Canetto, B.; Fresi, L.; Porcu, P. Real-Time Monitoring System of the Electricity Consumption in a Household Using NILM Techniques. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, Palermo, Virtual, Italy, 14–16 September 2020; pp. 90–95. [Google Scholar]
Name | Measurement Unit | Definition | |
---|---|---|---|
Active power | W | (7) | |
Fundamental active power | W | (8) | |
Harmonic active power | W | (9) | |
Fundamental reactive power | Var | (10) |
Appliance Label | Appliance Name | Number of Recorded Events |
---|---|---|
101 | Desktop Lamp | 25 |
103 | Garage Door | 23 |
108 | Kitchen Aid Chopper | 12 |
111 | Fridge | 546 |
118 | Computer A | 45 |
120 | Laptop B | 14 |
123 | DVR—Blue ray player | 33 |
127 | Air Compressor | 20 |
129 | TV | 53 |
131 | Printer | 146 |
134 | Iron | 40 |
140 | Monitor | 222 |
147 | Backyard lights | 16 |
149 | Office lights | 53 |
150 | Closet lights | 21 |
151 | Upstairs hallway light | 17 |
152 | Hallways Stairs lights | 58 |
155 | Kitchen overhead light | 56 |
156 | Bathroom upstairs lights | 97 |
157 | Dining room overhead light | 32 |
158 | Bedroom lights | 18 |
159 | Basement light | 38 |
TOT: | 1585 |
Training | Validation | Test | |
---|---|---|---|
# Events | 1252 | 160 | 173 |
Set | ce | TP | FP | FN | Precision | Recall | F-Score |
---|---|---|---|---|---|---|---|
Training | 0.05 | 1182 | 70 | 70 | 0.94 | 0.94 | 0.94 |
Validation | 0.05 | 151 | 9 | 9 | 0.94 | 0.94 | 0.94 |
Test | 0.08 | 157 | 16 | 16 | 0.91 | 0.91 | 0.91 |
Input | Set | ce | TP | FP | FN | Precision | Recall | F-Score |
---|---|---|---|---|---|---|---|---|
P1, Q1 (3rd and 4th time instant) | Training | 0.09 | 1138 | 114 | 114 | 0.91 | 0.91 | 0.91 |
Validation | 0.11 | 143 | 17 | 17 | 0.89 | 0.89 | 0.89 | |
Test | 0.11 | 154 | 19 | 19 | 0.89 | 0.89 | 0.89 | |
P1, Q1, PH (3rd and 4th time instant) | Training | 0.06 | 1158 | 94 | 94 | 0.92 | 0.92 | 0.92 |
Validation | 0.06 | 148 | 12 | 12 | 0.925 | 0.93 | 0.93 | |
Test | 0.08 | 157 | 16 | 16 | 0.91 | 0.91 | 0.91 |
[22] | MLP | |||
---|---|---|---|---|
Appliance | # Events in 24 h | F-Score | # Events in One Week | F-Score |
Fridge | 99 | 99.5 | 546 | 99.54 |
Air Compressor | 2 | 100 | 20 | 100 |
Backyard lights | 2 | 66.67 | 16 | 91.43 |
Bathroom upstairs light | 16 | 94.12 | 97 | 93 |
Bedroom lights | 6 | 85.71 | 18 | 88.24 |
Precision | Recall | F-Score |
---|---|---|
0.89 | 0.90 | 0.89 |
Precision | Recall | F-Score |
---|---|---|
0.90 | 0.81 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannas, B.; Carcangiu, S.; Carta, D.; Fanni, A.; Muscas, C. Selection of Features Based on Electric Power Quantities for Non-Intrusive Load Monitoring. Appl. Sci. 2021, 11, 533. https://doi.org/10.3390/app11020533
Cannas B, Carcangiu S, Carta D, Fanni A, Muscas C. Selection of Features Based on Electric Power Quantities for Non-Intrusive Load Monitoring. Applied Sciences. 2021; 11(2):533. https://doi.org/10.3390/app11020533
Chicago/Turabian StyleCannas, Barbara, Sara Carcangiu, Daniele Carta, Alessandra Fanni, and Carlo Muscas. 2021. "Selection of Features Based on Electric Power Quantities for Non-Intrusive Load Monitoring" Applied Sciences 11, no. 2: 533. https://doi.org/10.3390/app11020533
APA StyleCannas, B., Carcangiu, S., Carta, D., Fanni, A., & Muscas, C. (2021). Selection of Features Based on Electric Power Quantities for Non-Intrusive Load Monitoring. Applied Sciences, 11(2), 533. https://doi.org/10.3390/app11020533