Experimental Study on the Influence of TiN/AlTiN PVD Layer on the Surface Characteristics of Hot Work Tool Steel
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Hardening by Heat-Treating
2.3. Plasma Nitriding
2.4. Physical Vapor Deposition (PVD)
2.5. Surface Characterization
2.6. Wear Resistance
3. Results and Discussion
3.1. Microhardness
3.2. Surface Roughness
3.3. Characterization of PVD Surface Layer by SEM
3.4. Microscopy of PVD-Coated Samples
3.5. Wear Coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mesquita, R.A. Tool Steels: Properties and Performance; Taylor & Francis Group, LLC: Abingdon, UK, 2017; pp. 59–144. [Google Scholar]
- Heck, S.C.; Pires Fernandes, F.A.; Gomes Pereira, R.; Totten, G.E.; Casteletti, L.C. Influence of the Ion Nitriding Temperature in the Wear Resistance of AISI H13 Tool Steel. In Proceedings of the 18th IFHTSSE Congress, Rio de Janeiro, RJ, Brazil, 26 July 2010; pp. 5125–5130. [Google Scholar]
- Zhou, Z.C.; Du, J.; Yan, Y.; Shen, C. The Recent Development of Study on H13 Hot-Work Die Steel. Solid State Phenom. 2018, 279, 55–59. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jang, J.-H.; Joo, B.-D.; Son, Y.-M.; Moon, Y.-H. Laser surface hardening of AISI H13 tool steel. Trans. Nonferrous Met. Soc. China 2009, 19, 917–920. [Google Scholar] [CrossRef]
- Zeghni, A.E.; Hashmi, M.S.J. The effect of coating and nitriding on the wear behaviour of tool steels. J. Mater. Process. Technol. 2004, 155–156, 1918–1922. [Google Scholar] [CrossRef]
- Chang, S.-H.; Huang, K.-T.; Wang, Y.-H. Effects of Thermal Erosion and Wear Resistance on AISI H13 Tool Steel by Various Surface Treatments. Mater. Trans. 2012, 53, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Holleck, H.; Schier, V. Multilayer PVD coatings for wear protection. Surf. Coat. Technol. 1995, 76–77, 328–336. [Google Scholar] [CrossRef]
- Rechverger, J.; Brunner, P. High performance cutting tools with solids lubricants PVD coatings. Surf. Coat. Technol. 1993, 62, 393–398. [Google Scholar] [CrossRef]
- Karimoto, T.; Nishimoto, A. Plasma-Nitriding Properties of CoCrFeMnNi High-Entropy Alloys Produced by Spark Plasma Sintering. Metals 2020, 10, 761. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Amrutwar, S. Effect of Plasma Nitriding Pretreatment on the Mechanical Properties of AlCrSiN-Coated Tool Steels. Materials 2019, 12, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizpour, A.; Hahn, R.; Klimashin, F.F.; Wojcik, T.; Poursaeidi, E.; Mayrhofer, P.H. Deformation and Cracking Mechanism in CrN/TiN Multilayer Coatings. Coatings 2019, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Candido Recco, A.A.; Tschiptschin, A.P. Structural and Mechanical Characterization of Duplex Multilayer Coatings Deposited onto H13 Tool Steel. J. Mater. Res. Technol. 2012, 1, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Bouzakis, K.D.; Michailidis, N.; Skoradris, G.; Bouzakis, E.; Biermann, D.; M’Saoubi, R. Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann. 2012, 61, 703–723. [Google Scholar] [CrossRef]
- Ávila, R.; Mancosu, R.; Machado, A.; Vecchio, S.; Da Silva, R.; Vieira, J. Comparative analysis of wear on PVD TiN and (Ti1−x Alx)N coatings in machining process. Wear 2013, 302, 1192–1200. [Google Scholar] [CrossRef]
- Yang, B.; Chen, L.; Chang, K.K.; Pan, W.; Peng, Y.B.; Du, Y.; Liu, Y. Thermal and thermo-mechanical properties of Ti–Al–N and Cr–Al–N coatings. Int. J. Refract. Met. Hard Mater. 2012, 35, 235–240. [Google Scholar] [CrossRef]
- Alang, N.A.; Razak, N.A.; Miskam, A.K. Effect of Surface Roughness on Fatigue Life of Notched Carbon Steel. Int. J. Eng. Technol. IJET-IJENS 2011, 11, 161–163. [Google Scholar]
- Amin, A.; Abdul-Rani, A.; Danish, M.; Rubaiee, S.; Mahfouz, A.; Thompson, H.; Ali, S.; Unune, D.; Sulaiman, M. Investigation of Coatings, Corrosion and Wear Characteristics of Machined Biomaterials through Hydroxyapatite Mixed-EDM Process: A Review. Materials 2021, 14, 3597. [Google Scholar] [CrossRef]
- Bendarma, A.; Jankowiak, T.; Rusinek, A.; Lodygowski, T.; Jia, B.; Miguélez, M.H.; Klosak, M. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures. Materials 2020, 13, 4614. [Google Scholar] [CrossRef]
- Padmavathi, G.; Sarada, B.N.; Shanmuganathan, S.P.; Krishnamurthy, R.; Padmini, B.V. Investigation of HVOF processed carbide based coating on AISI-4340. AIP Conf. Proc. 2021, 2317, 020013. [Google Scholar] [CrossRef]
- Awan, A.; Pasha, R.A.; Butt, M.S.; Malik, R.A.; Alarifi, I.M.; Alzaid, M.; Latif, M.; Naseer, A.; Saleem, M.; Alrobei, H. Corrosion and wear behavior of TiN PVD coated 304 stainless-steel. J. Mech. Sci. Technol. 2020, 34, 3227–3232. [Google Scholar] [CrossRef]
- Tlili, B. Fretting Wear Performance of PVD Thin Films; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sousa, V.; Da Silva, F.; Pinto, G.; Baptista, A.; Alexandre, R. Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review. Metals 2021, 11, 260. [Google Scholar] [CrossRef]
- Smallman, R.E.; Ngan, A.H.W. Oxidation, Corrosion and Surface Engineering, in Modern Physical Metallurgy, 8th ed.; Butterworths: London, UK, 2014. [Google Scholar]
- Krella, A.K. Degradation of protective PVD coatings. In Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete and Power Industries; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Paldey, S.; Deevi, S.C. Single layer and multilayer resistant coatings of (TiAl)N: A review. Mat. Sci. Eng. 2002, 342, 58–79. [Google Scholar] [CrossRef]
- Bai, Y.; Xi, Y.; Gao, K.; Yanh, H.; Pang, X.; Volinsky, A.A. Residual stress control in CrAlN coatings deposited on Ti alloys. Ceram. Int. 2018, 44, 4653–4659. [Google Scholar] [CrossRef]
- Manivannan, R.; Sundararaj, S.; Dheenasagar, R.; Giridharan, K.; Sivaraman, P.R.; Udhayarani, V. Influence of Al2O3, SiC and B4C covalent multilayer PVD coating on surface properties of HSS rod. Mater. Today Proc. 2021, 39, 700–707. [Google Scholar] [CrossRef]
- Aihua, L.; Jianxin, D.; Haibing, C.; Yangyang, C.; Jun, Z. Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012, 31, 82–88. [Google Scholar] [CrossRef]
- Rosso, M.; Ugues, D.; Torres, E.; Perucca, M.; Kapranos, P. Performance enhancements of die casting tools trough PVD nanocoatings. Int. J. Mater. Form. 2008, 1, 1259–1262. [Google Scholar] [CrossRef]
- Navinšek, B.; Panjan, P.; Urankar, I.; Cvahte, P.; Gorenjak, F. Improvement of hot-working processes with PVD coatings and duplex treatment. Surf. Coat. Technol. 2001, 142–144, 1148–1154. [Google Scholar] [CrossRef]
- Panjan, P.; Urankar, I.; Navinšek, B.; Terčelj, M.; Turk, R.; Čekada, M.; Leskovšek, V. Improvement of hot forging tools with duplex treatment. Surf. Coat. Technol. 2002, 151–152, 505–509. [Google Scholar] [CrossRef]
- Haftlang, F.; Habibolahzadeh, A. Influence of Treatment Sequence on Tribological Performance of Duplex Surface-Treated AISI 1045 Steel. Acta Met. Sin. Engl. Lett. 2019, 32, 1227–1236. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Beake, B.D.; Yamamoto, K.; Bose, B.; Aguirre, M.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development. Coatings 2018, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Tillmann, W.; Stangier, D.; Denkena, B.; Grove, T.; Lucas, H. Influence of PVD-coating technology and pretreatments on residual stresses for sheet-bulk metal forming tools. Prod. Eng. 2015, 10, 17–24. [Google Scholar] [CrossRef]
- Gee, M.; Gant, A.; Hutchings, I.; Bethke, R.; Schiffman, K.; Van Acker, K.; Poulat, S.; Gachon, Y.; von Stebut, J. Progress towards standardisation of ball cratering. Wear 2003, 255, 1–13. [Google Scholar] [CrossRef]
- Silva, W.M.; Souza, P.S.; Carneiro, J.R. Methods of data analysis for the ball cratering test on TiN and DLC coated steel. Mater. Res. 2016, 19, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Sousa, V.F.; Silva, F.; Alexandre, R.; Fecheira, J. Study of the wear behaviour of TiAlSiN and TiAlN PVD coated tools on milling operations of pre-hardened tool steel. Wear 2021, 476, 203695. [Google Scholar] [CrossRef]
Element | C | Si | Mn | Cr | Mo | V |
---|---|---|---|---|---|---|
Concentration, [w/w%] | 0.40 | 0.25 | 0.45 | 5.25 | 2.31 | 0.65 |
Treatment | Sample Name |
---|---|
Hardened | N-H |
Hardened + Plasma Nitrided | N-H-PN |
Hardened + TiN/AlTiN (PVD coating) | N-H-PVD |
Hardened + Plasma Nitrided +TiN/AlTiN (PVD coating) | N-H-PN-PVD |
Designation of the Samples | Microhardness | EIT Elastic Modulus |
---|---|---|
N-H | 606 HV0.01 | 256 GPa |
N-H-PN | 1140 HV0.01 | 353 GPa |
N-H-PVD | 2938 HV0.01 | 202 GPa |
N-H-PN-PVD | 2679 HV0.01 | 166 GPa |
Number of the Test Sample | Ra (µm) |
---|---|
N-H | 0.01045 |
N-H-PN | 0.05745 |
N-H-PVD | 0.23335 |
N-H-PN-PVD | 0.1895 |
Layer Thickness | N-H-PVD Test Sample | N-H-PN-PVD Test Sample |
---|---|---|
Maximum thickness (µm) | 1.984 | 1.896 |
Minimum thickness (µm) | 1.159 | 1.172 |
Average thickness (µm) | 1.660 | 1.465 |
Test Samples | K (mm3/Nm) |
---|---|
N-H | 6.32 × 10−9 |
N-H-PN | 1.95 × 10−9 |
N-H-PVD | 8.46 × 10−10 |
N-H-PN-PVD | 1.47 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitay, E.; Tóth, L.; Kovács, T.A.; Nyikes, Z.; Gergely, A.L. Experimental Study on the Influence of TiN/AlTiN PVD Layer on the Surface Characteristics of Hot Work Tool Steel. Appl. Sci. 2021, 11, 9309. https://doi.org/10.3390/app11199309
Bitay E, Tóth L, Kovács TA, Nyikes Z, Gergely AL. Experimental Study on the Influence of TiN/AlTiN PVD Layer on the Surface Characteristics of Hot Work Tool Steel. Applied Sciences. 2021; 11(19):9309. https://doi.org/10.3390/app11199309
Chicago/Turabian StyleBitay, Enikő, László Tóth, Tünde Anna Kovács, Zoltán Nyikes, and Attila Levente Gergely. 2021. "Experimental Study on the Influence of TiN/AlTiN PVD Layer on the Surface Characteristics of Hot Work Tool Steel" Applied Sciences 11, no. 19: 9309. https://doi.org/10.3390/app11199309
APA StyleBitay, E., Tóth, L., Kovács, T. A., Nyikes, Z., & Gergely, A. L. (2021). Experimental Study on the Influence of TiN/AlTiN PVD Layer on the Surface Characteristics of Hot Work Tool Steel. Applied Sciences, 11(19), 9309. https://doi.org/10.3390/app11199309