Forms of Copper in the Aspect of Anthropogenic Changes in the Profiles of Horticultural Soils in the Cities of South-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Soil Sampling and Soil Properties
2.3. Heavy Metal Determination and Sequential Extraction Procedure
2.4. Indices of Pollution
- Cs—concentration of the heavy metal.
- Cn—background level of heavy metal.
- C—concentration of the heavy metal in the horizon.
- B—background level of heavy metal.
- ≤0: unpolluted.
- 0–1: unpolluted to moderately polluted.
- 1–2: moderately polluted.
- 2–3: moderately to highly polluted.
- 3–4: highly polluted.
- 4–5: highly to extremely highly polluted.
- ≥5: extremely highly polluted.
- Cav—content of the bioavailable form of the element.
- Ct—total content of the element.
- Cbio—concentrations of bioavailable forms of the metal in the studied soils, i.e., forms contained in fractions I-III of the sequential extraction of soil.
- Ctotal—the total concentration of the metal in the studied soil.
2.5. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Total Cu Content
3.3. Bioavailable Cu Forms
3.4. Indices of Pollution
3.5. Sequential Extraction of Cu
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burghardt, W.; Schneider, T. Bulk density and content, density and stock of carbon, nitrogen and heavy metals in vegetable patches and lawns of allotments gardens in the northwestern Ruhr area, Germany. J. Soils Sediments 2018, 18, 407–417. [Google Scholar] [CrossRef]
- Leitão, E.; Cameira, M.R.; Costa, H.D.; Pacheco, J.M.; Henriques, M.J.; Martins, L.L.; Mourato, M.P. Environmental quality in urban allotment gardens: Atmospheric deposition, soil, water and vegetable assessment at Lisbon city. Water Air Soil Pollut. 2018, 229, 31. [Google Scholar] [CrossRef]
- Morillo, E.; Romero, A.S.; Madrid, L.; Villaverde, J.; Maqueda, C. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut. 2008, 187, 41–51. [Google Scholar] [CrossRef]
- Charzyński, P.; Bednarek, R.; Hudańska, P.; Świtoniak, M. Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Sci. Plant Nutr. 2018, 64, 132–137. [Google Scholar] [CrossRef]
- Alloway, B.J. Contamination of soils in domestic gardens and allotments: A brief overview. Land Contam. Reclam. 2004, 12, 179–187. [Google Scholar] [CrossRef]
- Bechet, B.; Joimel, S.; Jean-Soro, L.; Hursthouse, A.; Agboola, A.; Leitão, T.E.; Costa, H.; Cameira, M.R.; Le Guern, C.; Schwartz, C.; et al. Spatial variability of trace elements in allotment gardens of four European cities: Assessments at city, garden, and plot scale. J. Soils Sediments 2018, 18, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Bretzel, F.; Calderisi, M.; Scatena, M.; Pini, R. Soil quality is key for planning and managing urban allotments intended for the sustainable production of home-consumption vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef]
- Giusti, L. Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. J. Soils Sediments 2011, 11, 1385–1398. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Thomas, R.P.; Ure, A.M.; Davidson, C.M.; Littlejohn, D. Three stage sequential extraction Procedure for the determination of metals in river sediments. Anal. Chem. Acta 1994, 286, 423–429. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communitie. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar]
- Makuch-Pietraś, I.; Wójcikowska-Kapusta, A. Differences in the content of Zn fractions in the profiles of soils from allotment and domestic gardens in south-eastern Poland. Land 2021, 10, 886. [Google Scholar] [CrossRef]
- Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Polish Soil Classification; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze: Warszawa, Poland, 2019. [Google Scholar]
- Polish Standard. Soil and Mineral Soil Materials—Sampling and Determination of Particle Size Distribution; PN-R-04032; Polish Committee for Standardization: Warszawa, Poland, 1998. [Google Scholar]
- Ostrowska, A.; Gawlinski, S.; Szczubiałka, Z. Methods of Analysis and Evaluation of Properties of Soils and Plants; Institute of Environmental Protection: Warsaw, Poland, 1991. [Google Scholar]
- Weissmannová, H.D.; Pavlovský, J.; Chovanec, P. Heavy metal contaminations of urban soils in Ostrava, Czech Republic: Assessment of metal pollution and using principal component analysis. Int. J. Environ. Res. 2015, 9, 683–696. [Google Scholar]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef]
- Dąbkowska–Naskręt, H.; Kędzia, W. Mobilność miedzi w uprawnych czarnych ziemiach kujawskich. Zesz Naukowe Komitetu Człowiek i Środowisko 1996, 14, 51–56. [Google Scholar]
- Bielicka-Giełdoń, A.; Ryłko, E.; Żamojć, K. Distribution, bioavailability and fractionation of metallic elements in allotment garden soils using the BCR sequential extraction procedure. Pol. J. Environ. Stud. 2013, 22, 1013–1021. [Google Scholar]
- Nawozowe, Z.; Cz, I. Liczby Graniczne do Wyceny Zawartości w Glebach Makro-i Mikroelementów; Seria P(14); IUNG Puławy: Puławy, Poland, 1990. [Google Scholar]
- Rozporządzenie Ministra Środowiska z Dnia 1 Września 2016 r. w Sprawie Sposobu Prowadzenia Oceny Zanieczyszczenia Powierzchni Ziemi. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 22 August 2021).
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warsaw, Poland, 1999. [Google Scholar]
- Chojnicki, J.; Czarnowska, K. The changes of the contents of total and readily soluble phosphorus and Zn, Cu, Pb, Cd in agricultural soils under intensive cultivation. Soil Sci. Ann. 1993, 44, 99–111. [Google Scholar]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Soil Sci. Ann. 1996, 47, 43–50. [Google Scholar]
- Czarnowska, K.; Gworek, B. Spatial distribution of heavy metals in soils and soil pH in Warsaw area. Pol. Ecol. Stud. 1983, 9, 85–95. [Google Scholar]
- Grzebisz, W.; Cieśla, L.; Komisarek, J.; Potarzycki, J. Geochemical assessment of heavy metals pollution of urban soils. Pol. J. Environ. Stud. 2002, 11, 493. [Google Scholar]
- Kabata–Pendias, A. Zawartość metali ciężkich w glebach uprawnych Polski. Pamiętnik Puławski 1981, 74, 101–111. [Google Scholar]
- Klimowicz, Z.; Melke, J. The content of heavy metals in soils in the vicinity of traffic roads using chosen stretches of road as examples. Soil Sci. Ann. 2000, 51, 36–45. [Google Scholar]
- Terelak, H.; Piotrowska, M.; Motowicka–Terelak, T.; Stuczyński, T.; Budzyńska, K. Zawartość metali ciężkich i siarki w glebach użytków rolnych Polski oraz ich zanieczyszczenie tymi składnikami. Zeszyty Problemowe Postępów Nauk Rolniczych 1995, 418, 45–59. [Google Scholar]
- Terelak, H.; Tujaka, A.; Motowicka–Terelak, T. Trace element content (Cd, Cu, Ni, Pb, Zn) in farm—Land soils in Poland. Arch. Ochr. Środ. 2001, 27, 159–174. [Google Scholar]
- Terelak, H.; Tujaka, A. Występowanie pierwiastków śladowych w glebach użytków rolnych województwa podkarpackiego. Zeszyty Problemowe Postępów Nauk Rolniczych 2003, 493, 245–252. [Google Scholar]
- Terelak, H.; Tujaka, A.; Pietruch, C. Cooper in the surface layer of the farmland soils in Poland. Pol. J. Soil Sci. 2003, 36, 137–143. [Google Scholar]
- Hursthouse, A.; Tognarelli, D.; Tucker, P.; Marsan, F.A.; Martini, C.; Madrid, L.; Madrid, F.; Diaz-Barrientos, E. Metal content of surface soils in parks and allotments from three European cities: Initial pilot study results. Land Contam. Reclam. 2004, 12, 189–196. [Google Scholar] [CrossRef]
- Gorlach, E.; Brydak, K.; Gambuś, F. Distribution of heavy metals in soil profiles of the Cracow region. Pol. J. Soil Sci. 1993, 26, 97–104. [Google Scholar]
- Bretzel, F.; Calderisi, M. Metal contamination in urban soils of coastal Tuscany (Italy). Environ. Monit. Assess. 2006, 118, 319–335. [Google Scholar] [CrossRef]
- Davidson, C.M.; Urquhart, G.J.; Ajmone–Marsan, F.; Biasioli, M.; Costa Duarte, A.; Diaz–Barrientos, E.; Grčman, H.; Hossack, I.; Hursthouse, A.; Madrid, L.; et al. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential procedure. Anal. Chim. Acta 2006, 565, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Römkens, P.; Salomons, W. Cd, Cu and Zn solubility in arable and forest soils: Consequences of land use changes for metal mobility and risk assessment. Soil Sci. 1998, 163, 859–871. [Google Scholar] [CrossRef]
- Kabała, C.; Chodak, T.; Szerszeń, L.; Karczewska, A.; Szopka, K.; Fratczak, U. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wrocław. Fresenius Environ. Bull. 2009, 18, 622–630. [Google Scholar]
- Ciupa, T.; Suligowski, R.; Kozłowski, R. Trace metals in surface soils under different land uses in Kielce city, south-central Poland. Environ. Earth Sci. 2020, 79, 14. [Google Scholar] [CrossRef]
- Świercz, A.; Smorzewska, E. Variations in the zinc and lead content in surface layers of urban soils in Kielce (Poland) with regard to land use. J. Elem. 2015, 20, 449–461. [Google Scholar]
- Świercz, A.; Zajęcka, E. Accumulation of heavy metals in the urban soils of the city of Skarżysko-Kamienna (Poland) with regard to land use. Carpath. J. Earth Environ. 2018, 13, 249–266. [Google Scholar] [CrossRef]
- Moćko, A.; Wacławek, W. Three-step extraction procedure for determination of heavy metals availability to vegetables. Anal. Bioanal. Chem. 2004, 380, 813–817. [Google Scholar] [CrossRef]
- Chao, W.; Xiao–Chen, L.; Li–Min, Z.; Pei–Fang, W.; Zhi–Yong, G. Pb, Cu, Zn and Ni concentration in vegetables in relation to their extractable fractions in soils in suburban areas of Nanjing, China. Pol. J. Environ. Stud. 2007, 16, 199–207. [Google Scholar]
- Kaasalainen, M.; Yli-Halla, M. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 2003, 126, 225–233. [Google Scholar] [CrossRef]
- Dąbkowska-Naskręt, H.; Różański, S.; Bartkowiak, A. Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland. Soil Sci. Ann. 2016, 67, 73–78. [Google Scholar] [CrossRef] [Green Version]
Fraction | Extraction Solvent | |
---|---|---|
I | Exchangeable and Acid Soluble | 0.11 M CH3COOH, pH = 2 |
II | Reducible | 0.1 mol·dm−3 NH2OH ⋅ HCl, pH = 2 |
III | Organic | 30% H2O2 + 1 mol·dm−3 CH3COONH4, pH = 2 |
IV | Residual | HNO3 + HClO4 |
Properties of Studied Soil | Cu Total | Cu Avail. | pH H2O | pH KCl | C Org | <0.002 |
---|---|---|---|---|---|---|
Cu Total | 1000 | 0.936 * | 0.748 *** | 0.782 | 0,575 | 0.253 |
Cf | −0.247 | −0.195 | −0.352 | −0,452 | 0.075 | −0.533 |
Cu Available | 0.936 * | 1 | 0.858 ** | 0.865 ** | 0.734 *** | 0.114 |
Ca/Ct | 0.311 | 0.603 | 0.772 *** | 0.715 *** | 0.681 *** | −0.043 |
Igeo | −0.171 | −0.146 | −0.357 | −0,459 | 0.023 | −0.483 |
I Fraction | −0.023 | −0.013 | 0.206 | 0.212 | 0.19 | −0.243 |
II Fraction | 0.461 | 0.264 | 0.392 | 0.404 | −0.046 | 0.936 * |
III Fraction | 0.823 ** | 0.865 ** | 0.613 | 0.665 | 0.802 ** | −0.067 |
IV Fraction | −0.865 ** | −0.878 ** | −0.668 *** | −0.721 | −0.788 *** | −0.050 |
BF | 0.865 ** | 0.878 ** | 0.668 *** | 0.721 | 0.788 *** | 0.05 |
Properties of Studied Soil | Cu Total | Cu Avail. | pH H2O | pH KCl | C Org | <0.002 |
---|---|---|---|---|---|---|
Cu total | 1 | 0.333 | 0.301 | 0.158 | 0.471 | 0.656 |
Cf | −0.053 | 0.714 *** | 0.022 | 0.048 | 0.36 | −0.406 |
Cu Available | 0.333 | 1 | 0.279 | 0.29 | 0.721 *** | −0.349 |
Ca/Ct | −0.328 | 0.755 *** | −0.029 | 0.077 | 0.348 | −0.774 *** |
Igeo | 0.181 | 0.912 * | 0.316 | 0.028 | 0.482 | −0.631 |
I Fraction | 0.392 | 0.303 | 0.004 | 0.215 | 0.482 | 0.052 |
II Fraction | −0.093 | 0.537 | −0.000 | 0.206 | 0.434 | −0.391 |
III Fraction | −0.645 | 0.378 | −0.139 | −0.068 | 0.024 | −0.639 |
IV Fraction | 0.319 | −0.520 | 0.095 | −0.090 | −0.317 | 0.525 |
BF | −0.319 | 0.52 | −0.095 | 0.09 | 0.317 | −0.525 |
Statistic | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
---|---|---|---|---|
Eigenvalues | 0.4018 | 0.2613 | 0.0955 | 0.0760 |
Explained Variation (Cumulative) | 40.18 | 66.31 | 75.86 | 83.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuch-Pietraś, I.; Wójcikowska-Kapusta, A. Forms of Copper in the Aspect of Anthropogenic Changes in the Profiles of Horticultural Soils in the Cities of South-Eastern Poland. Appl. Sci. 2021, 11, 9018. https://doi.org/10.3390/app11199018
Makuch-Pietraś I, Wójcikowska-Kapusta A. Forms of Copper in the Aspect of Anthropogenic Changes in the Profiles of Horticultural Soils in the Cities of South-Eastern Poland. Applied Sciences. 2021; 11(19):9018. https://doi.org/10.3390/app11199018
Chicago/Turabian StyleMakuch-Pietraś, Iwona, and Anna Wójcikowska-Kapusta. 2021. "Forms of Copper in the Aspect of Anthropogenic Changes in the Profiles of Horticultural Soils in the Cities of South-Eastern Poland" Applied Sciences 11, no. 19: 9018. https://doi.org/10.3390/app11199018
APA StyleMakuch-Pietraś, I., & Wójcikowska-Kapusta, A. (2021). Forms of Copper in the Aspect of Anthropogenic Changes in the Profiles of Horticultural Soils in the Cities of South-Eastern Poland. Applied Sciences, 11(19), 9018. https://doi.org/10.3390/app11199018