Dynamic Responses of the Aero-Engine Rotor System to Bird Strike on Fan Blades at Different Rotational Speeds
Abstract
:1. Introduction
2. Bird Strike and Rotor Dynamic Modeling
2.1. Bird Strike Modeling
2.2. Rotor System Modeling
- The force from the bird strike was taken into account on the disk.
- The unbalanced mass of the rotor system concentrated on the two rotor disks, and the mass of the rotor system was discretized into the five mass points on the shaft.
- The materials of the blade and the disk behave according to Hooke’s law.
- The blade, disk, and shaft were considered to be rigidly connected to each other, ignoring the connections between them.
- The torsional vibration and gyroscopic moment of the system were neglected.
3. Results and Discussions
3.1. Bird Strike Force at Different Rotational Speeds
3.2. Numerical Simulation of Rotor System Dynamic
3.3. The Dynamic Responses of Rotor System Fan before and after Bird Strike
3.4. The Dynamic Response of the Rotor System
3.5. The Influence of the Rotational Speed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Nomenclature
Abbreviation | Definition |
3D | Three Dimensional |
ALE | Arbitrary Lagrangian-Eulerian |
CT | Computed Tomography |
DICOM | Digital Imaging and Communications in Medicine |
EOS | Equation Of State |
FAA | Federal Aviation Administration |
FEM | Finite Element Method |
QAR | Quick Access Recorder |
SPH | Smoothed Particle Hydrodynamics |
List of symbols | |
Symbol | Definition |
a | First-order volume correction to γ0 |
Bx, By | Bird impact forces in the x and y directions |
C | Intercept of the velocity curve |
CB | Damping coefficients of ball bearings |
CR | Damping coefficients of the disk |
E | Elastic Modulus of material |
Eccentricity of Disk 1 and 2 | |
FBix, FBiy | Bearing support forces in the x and y directions |
g | Acceleration of gravity |
Kb | Bearing stiffness |
Kr | Stiffness of the shaft |
MR1, MR2 | Federal Aviation Administration |
MB1, MB2, MB3 | Finite Element Method |
p | Pressure |
S1, S2, S3 | Slope coefficients of the velocity curve |
t | Time |
x, y | Displacement in the x and y directions |
, | Speed in the x and y directions |
, | Acceleration in the x and y directions |
, | Dimensionless displacement |
, | Dimensionless speed |
, | Dimensionless acceleration |
Gruneisen constant | |
Clearance of the ball bearing | |
Density of the material | |
Reference density | |
Rotational speed |
References
- Dolbeer, R.A.; Begier, M.J.; Miller, P.R.; Weller, J.R.; Anderson, A.L. Wildlife Strikes to Civil. Aircraft in the United States, 1990–2019; Federal Aviation Administration: Washington, DC, USA, 2021. [Google Scholar]
- Abrate, S. Soft impacts on aerospace structures. Prog. Aerosp. Sci. 2016, 81, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.V. Failure Analysis of Rotorcraft Composite End Plate Structure Under High-Velocity Bird Impact. J. Fail. Anal. Prev. 2016, 16, 864–873. [Google Scholar] [CrossRef]
- Sinha, S.K. Transient dynamics of slicing-impact loading on jet engine fan blades during a bird-strike event. In Proceedings of the 15th International LS-DYNA Users Conference, Detroit, MI, USA, 10–12 June 2018. [Google Scholar]
- Heimbs, S. Computational methods for bird strike simulations: A review. Comput. Struct. 2011, 89, 2093–2112. [Google Scholar] [CrossRef]
- Hedayati, R.; Ziaei-Rad, S. Foam-core effect on the integritys of tailplane leading edge during bird-strike event. J. Aircr. 2011, 48, 2080–2089. [Google Scholar] [CrossRef]
- Hedayati, R.; Ziaei-Rad, S. A new bird model and the effect of bird geometry in impacts from various orientations. Aerosp. Sci. Technol. 2013, 28, 9–20. [Google Scholar] [CrossRef]
- McCallum, S.; Shoji, H.; Akiyama, H. Development of an advanced multi-material bird-strike model using the smoothed particle hydrodynamics method. Int. J. Crashworthiness 2013, 18, 579–596. [Google Scholar] [CrossRef]
- Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies. Aerosp. Sci. Technol. 2014, 32, 260–266. [Google Scholar] [CrossRef]
- Mccarty, R. Finite element analysis of F-16 aircraft canopy dynamic response to bird impact loading. In Proceedings of the 21st Structures Structural Dynamics, and Materials Conference, Seattle, WA, USA, 12–14 May 1980; p. 804. [Google Scholar]
- Georgiadis, S.; Gunnion, A.J.; Thomson, R.S.; Cartwright, B.K. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos. Struct. 2008, 86, 258–268. [Google Scholar] [CrossRef]
- Huertas-Ortecho, C.A. Robust Bird-Strike Modeling Using LS-DYNA; University of Puerto Rico: Mayaguez, Puerto Rico, 2007. [Google Scholar]
- Castelletti, M.L.; Anghileri, M. Multiple Birdstrike Analysis a Survey of Feasible Techniques. In Proceedings of the 30th European Rotorcraft Forum, Marseilles, Frances, 14–16 September 2003; p. 14-162003. [Google Scholar]
- Johnson, A.F.; Holzapfel, M. Modelling soft body impact on composite structures. Compos. Struct. 2003, 61, 103–113. [Google Scholar] [CrossRef]
- Audic, S.; Berthillier, M.; Bonini, J.; Bung, H.; Combescure, A. Prediction of bird impact in hollow fan blades. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24–28 July 2000. [Google Scholar]
- Brockman, R.A. Finite Element Analysis of Soft-Body Impact; University of Dayton Research Institute: Dayton, OH, USA, 1984. [Google Scholar]
- Badshah, S.; Naeem, A.; Farhan Rafique, A.; Ul Haq, I.; Abdullah Malik, S. Numerical Study on the Critical Frequency Response of Jet Engine Rotors for Blade-Off Conditions against Bird Strike. Appl. Sci. 2019, 9, 5568. [Google Scholar] [CrossRef] [Green Version]
- Kalam, S.A.; Rayavarapu, V.K.; Ginka, R.J. Impact Behaviour of Soft Body Projectiles. J. Inst. Eng. Ser. C 2018, 99, 33–44. [Google Scholar] [CrossRef]
- Lavoie, M.; Gakwaya, A.; Ensan, M.N.; Zimcik, D. Validation of available approaches for numerical bird strike modeling tools. Int. Rev. Mech. Eng. 2007, 1, 380–389. [Google Scholar]
- Sun, Y.; Zhang, Y.; Zhou, Y.; Zhang, H.; Yang, K. Evaluating Impact Damage of Flat Composite Plate for Surrogate Bird-Strike Testing of Aeroengine Fan Blade. J. Compos. Sci. 2021, 5, 171. [Google Scholar] [CrossRef]
- Amoo, L.M. On the design and structural analysis of jet engine fan blade structures. Prog. Aerosp. Sci. 2013, 60, 1–11. [Google Scholar] [CrossRef]
- Sinha, S.K. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads. J. Sound Vib. 2013, 332, 2253–2283. [Google Scholar] [CrossRef] [Green Version]
- Muir, E.R.; Friedmann, P.P. Forced and Aeroelastic Responses of Bird-Damaged Fan Blades: A Comparison and Its Implications. J. Aircr. 2016, 53, 561–577. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhong, D.; Li, Y.; Tang, Z.; Gao, X.; Zhang, Z.; Huang, F. Numerical simulation and test on damage of rotary engine blades impacted by bird. Int. J. Crashworthiness 2019, 24, 106–120. [Google Scholar] [CrossRef]
- Merculov, V.; Kostin, M.; Martynenko, G.; Smetankina, N.; Martynenko, V. Force Simulation of Bird Strike Issues of Aircraft Turbojet Engine Fan Blades. In Proceedings of the International Conference on Reliable Systems Engineering, Palermo, Italy, 24–26 November 2021; Springer: Cham, Switzerland, 2021; pp. 129–141. [Google Scholar]
- Sinha, S.K.; Turner, K.E.; Jain, N. Dynamic Loading on Turbofan Blades Due to Bird-Strike. In Proceedings of the Asme Turbo Expo, Copenhagen, Denmark, 11–15 June 2012; Volume 6, pp. 1017–1031. [Google Scholar]
- Matta, P.; Arghir, M. Identification method for rotordynamic coefficients of cylindrical air bearing using an impact hammer. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 199–212. [Google Scholar] [CrossRef]
- Wu, T.; Wang, L.; Wu, L.; Su, S. Transient Response of Flexible Supported Rotor under Airflow Excitation. At. Energy Sci. Technol. 2019, 53, 563–568. [Google Scholar]
- Yu, P.; Zhang, D.; Ma, Y.; Hong, J. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out. Mech. Syst. Signal Pract. 2018, 106, 158–175. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, J.; Chen, G.; Yang, Y.; Cao, D. Rub-Impact Investigation of a Single-Rotor System Considering Coating Effect and Coating Hardness. J. Vib. Eng. Technol. 2021, 9, 491–505. [Google Scholar] [CrossRef]
- Ding, K.; Wang, Z.; Lu, X.; Zhang, J.; Ma, L. Vibration investigation of rotor system with unbalance and blade-casing rubbing coupling faults. J. Vibroeng. 2020, 22, 353–365. [Google Scholar] [CrossRef]
- Sun, Z.C.; Xu, J.X.; Zhou, T. Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mech. Mach. Theory 2002, 37, 659–672. [Google Scholar] [CrossRef]
- Jacquet-Richardet, G.; Torkhani, M.; Cartraud, P.; Thouverez, F.; Baranger, T.N.; Herran, M.; Gibert, C.; Baguet, S.; Almeida, P.; Peletan, L. Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Pract. 2013, 40, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Yin, F.; Wu, Z.; Tai, X.; Wen, B. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing. Nonlinear Dyn. 2016, 84, 1225–1258. [Google Scholar] [CrossRef]
- Gao, P.; Hou, L.; Yang, R.; Chen, Y. Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 2019, 68, 29–47. [Google Scholar] [CrossRef]
- Hong, J.; Yu, P.; Zhang, D.; Ma, Y. Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact. Mech. Syst. Signal Pract. 2018, 116, 443–461. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, J.; Ma, L.; Lin, J.; Wang, J.; Wang, J.; Dai, H. Effects of misalignment on the nonlinear dynamics of a two-shaft rotor-bearing-gear coupling system with rub-impact fault. J. Vibroeng. 2017, 19, 5960–5977. [Google Scholar] [CrossRef]
- Prabith, K.; Krishna, I.R.P. The numerical modeling of rotor-stator rubbing in rotating machinery: A comprehensive review. Nonlinear Dyn. 2020, 101, 1317–1363. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Lin, J.; Ma, L.; Wang, J. Dynamic Analysis of a Rotor-Bearing-SFD System with the Bearing Inner Race Defect. Shock Vib. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, R.; Ziaei-Rad, S. Effect of bird geometry and orientation on bird-target impact analysis using SPH method. Int. J. Crashworthiness 2012, 17, 445–459. [Google Scholar] [CrossRef]
- Vignjevic, R.; Orlowski, M.; De Vuyst, T.; Campbell, J.C. A parametric study of bird strike on engine blades. Int. J. Impact Eng. 2013, 60, 44–57. [Google Scholar] [CrossRef]
- Hedayati, R.; Sadighi, M. Bird Strike: An Experimental, Theoretical and Numerical Investigation; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Zhang, D.; Fei, Q. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method. Aerosp. Sci. Technol. 2016, 54, 320–329. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Dai, H.; Reza, H.; Yuan, Y.; Zhang, G. Effect of Impact Position and Fan Rotational Speed on Bird-Impact Process. J. Tianjin Univ. 2020, 53, 492–501. [Google Scholar]
- Wilbeck, J.S. Impact Behavior of Low Strength Projectiles; Texas A&M University: College Station, TX, USA, 1977. [Google Scholar]
Material | Mass Density kg/m3 | Elastic Modulus GPa | Poisson’s Ratio | Yield Stress MPa | Tangent Modulus GPa | Hardening Parameter | Strain Rate Parameter, C | Strain Rate Parameter, P | Effective Plastic Strain |
---|---|---|---|---|---|---|---|---|---|
Ti-6Al-4V | 4500 | 112.5 | 0.33 | 958 | 1.139 | 0.2 | 200 | 15 | 0.2 |
Mass (kg) | Stiffness (N/m) | Damping (N·s/m) | Other Parameters |
---|---|---|---|
= 3 × 107 | = 5 × 10−5 m | ||
= 6 × 107 | = 5 × 10−5 m | ||
= 1.1 × 10−4 m | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Lin, J.; Hedayati, R.; Zhang, G.; Zhang, J.; Zhang, L. Dynamic Responses of the Aero-Engine Rotor System to Bird Strike on Fan Blades at Different Rotational Speeds. Appl. Sci. 2021, 11, 8883. https://doi.org/10.3390/app11198883
Wu B, Lin J, Hedayati R, Zhang G, Zhang J, Zhang L. Dynamic Responses of the Aero-Engine Rotor System to Bird Strike on Fan Blades at Different Rotational Speeds. Applied Sciences. 2021; 11(19):8883. https://doi.org/10.3390/app11198883
Chicago/Turabian StyleWu, Bin, Jiewei Lin, Reza Hedayati, Guichang Zhang, Junhong Zhang, and Lipeng Zhang. 2021. "Dynamic Responses of the Aero-Engine Rotor System to Bird Strike on Fan Blades at Different Rotational Speeds" Applied Sciences 11, no. 19: 8883. https://doi.org/10.3390/app11198883
APA StyleWu, B., Lin, J., Hedayati, R., Zhang, G., Zhang, J., & Zhang, L. (2021). Dynamic Responses of the Aero-Engine Rotor System to Bird Strike on Fan Blades at Different Rotational Speeds. Applied Sciences, 11(19), 8883. https://doi.org/10.3390/app11198883