Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator
Abstract
:1. Introduction
2. Coupling Model and Analysis
3. Optical Experimental Setup
4. Results and Discussion
4.1. Effects of Propagation () and Transmission ()
4.2. Effect of the Radius of Curvature in RCSS
4.3. Effect of Rotation in RCSS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCSS | Round-cornered square-shaped |
FWHM | Full-width at half-maximum |
EMFD | Electromagnetic finite domain |
FEA | Finite element analysis |
RI | Refractive index |
FSR | Free spectral range |
References
- Hamzah, H.; Lees, J.; Porch, A. Split ring resonator with optimised sensitivity for microfluidic sensing. Sens. Actuators A Phys. 2018, 276, 1–10. [Google Scholar] [CrossRef]
- Rabus, D.G. Integrated Ring Resonators: The Compendium; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2007; Available online: https://www.springer.com/de/book/9783540687863 (accessed on 27 November 2020).
- Wei, X.; Panindre, P.; Zhang, Q.; Song, Y.-A. Increasing the detection sensitivity for dna-morpholino hybridization in sub-nanomolar regime by enhancing the surface ion conductance of pedot:pss membrane in a microchannel. ACS Sens. 2016, 1, 862–865. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Tambasco, J.-L.J.; Peruzzo, A. Tunable large free spectral range microring resonators in lithium niobate on insulator. Sci. Rep. 2019, 9, 11086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steglich, P.; Hülsemann, M.; Dietzel, B.; Mai, A. Optical Biosensors Based on Silicon-On-Insulator Ring Resonators: A Review. Molecules 2019, 24, 519. [Google Scholar] [CrossRef] [Green Version]
- Henriksson, A.; Kasper, L.; Jäger, M.; Neubauer, P.; Birkholz, M. An approach to ring resonator biosensing assisted by dielectrophoresis: Design, simulation and fabrication. Micromachines 2020, 11, 9543. [Google Scholar] [CrossRef]
- Panindre, P. Label-Free Optical Sensing of a Single Exosome in a Microfluidic Chip. Ph.D. Thesis, Polytechnic Institute of New York University, Brooklyn, NY, USA, 2016. [Google Scholar]
- Mousavi, N.S.S.; Panindre, P.; Kumar, S. Design Optimization of a Single-Mode Microring Resonator for Label-Free Detection of Biomarkers within a Tunable Spectral Range of 2 nm. In Biomedical Imaging and Sensing Conference; Matoba, O., Awatsuji, Y., Luo, Y., Yatagai, T., Aizu, Y., Eds.; SPIE: Yokohama, Japan, 2018. [Google Scholar] [CrossRef]
- Puckett, M.W.; Liu, K.; Chauhan, N.; Zhao, Q.; Jin, N.; Cheng, H.; Wu, J. 422 Million Intrinsic Quality Factor Planar Integrated All-Waveguide Resonator with Sub-MHz Linewidth. Nat. Commun. 2021, 12, 934. [Google Scholar] [CrossRef]
- Spencer, D.T.; Bauters, J.F.; Heck, M.J.R.; Bowers, J.E. Integrated Waveguide Coupled Si3N4 Resonators in the Ultrahigh-Q Regime. Optica 2014, 1, 153. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Olio, F.D.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Comprehensive Mathematical Modelling of Ultra-High Q Grating-Assisted Ring Resonators. J. Opt. 2020, 22, 035802. [Google Scholar] [CrossRef]
- Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 2002, 14, 483–485. [Google Scholar] [CrossRef] [Green Version]
- Heebner, J.; Wong, V.; Schweinsberg, A.; Boyd, R.; Jackson, D. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 2004, 40, 726–730. [Google Scholar] [CrossRef]
- Timotijevic, B.; Gardes, F.; Headley, W.; Reed, G.; Paniccia, M.; Cohen, O.; Hak, D.; Masanovic, G. Multi-stage racetrack resonator filters in silicon-on-insulator. J. Opt. A Pure Appl. Opt. 2006, 8, S473. [Google Scholar] [CrossRef]
- Bogaerts, W.; Heyn, P.D.; Vaerenbergh, T.V.; Vos, K.D.; Selvaraja, S.K.; Claes, T.; Dumon, P.; Bienstman, P.; Thourhout, D.V.; Baets, R. Silicon microring resonators. Laser Photon. Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Panindre, P.; Kumar, S. Temperature effects on optical resonances in single-mode circular ring and squircular resonators. In Proceedings of the ASME 2017 Heat Transfer Summer Conference, Bellevue, WA, USA, 9–12 July 2017; Volume 2, p. V002T15A001. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, C. Reverse design of microring resonator channel dropping filters. Results Phys. 2020, 19, 103380. [Google Scholar] [CrossRef]
- Kargar, A.; Lee, C. Analysis of racetrack resonators in surface sensing applications. In Proceedings of the PhotonicsGlobal@Singapore, Singapore, 8–11 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Chin, M.; Ho, S. Design and modeling of waveguide-coupled single-mode microring resonators. J. Light. Technol. 1998, 16, 1433. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Yegnanarayanan, S.; Li, Q.; Adibi, A. Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: Theory and experiment. IEEE J. Quantum Electron. 2010, 46, 1158–1169. [Google Scholar] [CrossRef]
- Poon, A.; Courvoisier, F.; Chang, R.K. Multimode resonances in square-shaped optical microcavities. Opt. Lett. 2001, 26, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Latiff, A.A.; Rahim, A.; Rafis, H.; Jaafar, A.; Gannapathy, V.R.; Zainuddin, M.N.S. Design high-q square resonator add-drop filter for cwdm application. Aust. J. Basic Appl. Sci. 2013, 7, 364–367. Available online: http://www.ajbasweb.com/old/ajbas/2013/August/364-367.pdf (accessed on 21 September 2020).
- Moon, H.-J.; Sun, S.-P.; Park, G.-W.; Lee, J.-H.; An, K. Whispering gallery mode lasing in a gain-coated square microcavity with round corners. Jpn. J. Appl. Phys. 2003, 42, L652. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Benson, T.M.; Sewell, P.; Nosich, A.I. Optical modes in 2-d imperfect square and triangular microcavities. IEEE J. Quantum Electron. 2005, 41, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-H.; Huang, Y.-Z.; Lu, Q.-Y.; Yu, L.-J. Modes in square resonators. IEEE J. Quantum Electron. 2003, 39, 1563–1566. [Google Scholar] [CrossRef]
- Fong, C.Y.; Poon, A.W. Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities. Opt. Express 2003, 11, 2897–2904. [Google Scholar] [CrossRef] [Green Version]
- Panindre, P.; Kumar, S. Effect of rounding corners on optical resonances in single-mode sharp-cornered microresonators. Opt. Lett. 2016, 41, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Panindre, P.; Kumar, S. Closed Loop Microresonators Having Linear Portions and Filleted Corners, Systems Including Such Microresonators, and Methods of Fabricating Such Microresonators. U.S. Patent 10,684,418, 7 November 2019. (Pub. No. US 2019/0339455 A1). Available online: https://www.freepatentsonline.com/y2019/0339455.html (accessed on 14 November 2020).
- Marcatili, E.A.J. Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics. Bell Syst. Tech. J. 1969, 48, 2071–2102. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Lee, R.K.; Yariv, A. Scattering-Theory Analysis of Waveguide-Resonator Coupling. Phys. Rev. E 2000, 62, 7389–7404. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wang, J. Optically-Controlled Extinction Ratio and Q-Factor Tunable Silicon Microring Resonators Based on Optical Forces. Sci. Rep. 2015, 4, 5409. [Google Scholar] [CrossRef] [Green Version]
- Sumetsky, M. Optimization of Optical Ring Resonator Devices for Sensing Applications. Opt. Lett. 2007, 32, 2577. [Google Scholar] [CrossRef]
- Lien, S. Chuang, Physics of Photonic Devices, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Geuzebroek, D.H.; Driessen, A. Ring-Resonator-Based Wavelength Filters; Springer: Berlin/Heidelberg, Germany, 2006; Volume 123, pp. 341–379. Available online: http://link.springer.com/10.1007/3-540-31770-8_9 (accessed on 22 September 2020).
- Applied Nanotools Inc.: X-ray Optics and Integrated Photonics. Available online: https://www.appliednt.com/ (accessed on 18 August 2020).
- Panindre, P.; Mousavi, N.S.S.; Kumar, S. Effect of rotation on quality factor of single-mode optical resonances in round-cornered square-shaped resonators. In Physics and Simulation of Optoelectronic Devices XXVI; SPIE: San Francisco, CA, USA, 2018; Volume 10526, p. 1052627. [Google Scholar] [CrossRef]
- COMSOL. Comsol Multiphysics User Guide (Version 5.2 a); COMSOL Multiphysics, AB: Stockholm, Sweden, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panindre, P.; Mousavi, N.S.S.; Paredes, B.; Rasras, M.; Kumar, S. Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator. Appl. Sci. 2021, 11, 8659. https://doi.org/10.3390/app11188659
Panindre P, Mousavi NSS, Paredes B, Rasras M, Kumar S. Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator. Applied Sciences. 2021; 11(18):8659. https://doi.org/10.3390/app11188659
Chicago/Turabian StylePanindre, Prabodh, N.S.Susan Mousavi, Bruna Paredes, Mahmoud Rasras, and Sunil Kumar. 2021. "Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator" Applied Sciences 11, no. 18: 8659. https://doi.org/10.3390/app11188659
APA StylePanindre, P., Mousavi, N. S. S., Paredes, B., Rasras, M., & Kumar, S. (2021). Coupling and Optical Analysis of a Round-Cornered Square-Shaped Microresonator. Applied Sciences, 11(18), 8659. https://doi.org/10.3390/app11188659