Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute
Abstract
:Featured Application
Abstract
1. Introduction
- Identification and assignment of functional groups to main bands and peaks common among the analyzed species;
- Identification of regions with highest variability as well as any particularities based on comparative assessment of spectra;
- Defining common spectral quality marker regions of cellulosic fibers among the four species.
2. Materials and Methods
2.1. Biologic Material
2.2. Cultivation
2.3. Climatic Conditions and Soil
2.4. Spectroscopic Assay
3. Results and Discussion
3.1. Characterization of Main Spectral Regions
3.1.1. Spectral Region 650–1200 cm−1
3.1.2. Spectral Region 1200–1800 cm−1
3.1.3. Spectral Region 2500–3500 cm−1
3.2. Quality Marker Regions and Their Significance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhu, P.; Sanjay, M.R.; Senthamaraikannan, P.; Pradeep, S.; Saravanakumar, S.S.; Yogesha, B. A Review on Synthesis and Characterization of Commercially Available Natural Fibers: Part-I. J. Nat. Fibers 2019, 16, 1132–1144. [Google Scholar] [CrossRef]
- Fisher, C.H. History of Natural Fibers. J. Macromol. Sci. Part Chem. 1981, 15, 1345–1375. [Google Scholar] [CrossRef]
- Maache, M.; Bezazi, A.; Amroune, S.; Scarpa, F.; Dufresne, A. Characterization of a Novel Natural Cellulosic Fiber from Juncus effusus L. Carbohydr. Polym. 2017, 171, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Jebadurai, S.G.; Raj, R.E.; Sreenivasan, V.S.; Binoj, J.S. Comprehensive Characterization of Natural Cellulosic Fiber from Coccinia grandis Stem. Carbohydr. Polym. 2019, 207, 675–683. [Google Scholar] [CrossRef]
- Ramawat, K.G.; Ahuja, M.R. Fiber Plants: An Overview. In Fiber Plants: Biology, Biotechnology and Applications; Ramawat, K.G., Ahuja, M.R., Eds.; Sustainable Development and Biodiversity; Springer International Publishing: Cham, The Netherlands, 2016; pp. 3–15. ISBN 978-3-319-44570-0. [Google Scholar]
- Manimaran, P.; Prithiviraj, M.; Saravanakumar, S.S.; Arthanarieswaran, V.P.; Senthamaraikannan, P. Physicochemical, Tensile, and Thermal Characterization of New Natural Cellulosic Fibers from the Stems of Sida cordifolia. J. Nat. Fibers 2018, 15, 860–869. [Google Scholar] [CrossRef]
- Maheshwaran, M.V.; Hyness, N.R.J.; Senthamaraikannan, P.; Saravanakumar, S.S.; Sanjay, M.R. Characterization of Natural Cellulosic Fiber from Epipremnum aureum Stem. J. Nat. Fibers 2018, 15, 789–798. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J.; Wu, N.; Ma, Y.; Menon, C.; Tong, J. Characterization of Natural Cellulose Fiber from Corn Stalk Waste Subjected to Different Surface Treatments. Cellulose 2019, 26, 4707–4719. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E. Characterization of New Natural Cellulosic Fiber from Cissus quadrangularis Stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hassan, E.A.M.; Memon, H.; Elagib, T.H.H.; Abad AllaIdris, F. Characterization of Natural Composites Fabricated from Abutilon-Fiber-Reinforced Poly (Lactic Acid). Processes 2019, 7, 583. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneshwaran, M.; Subramani, S.P.; Palaniappan, S.K.; Pal, S.K.; Balu, S. Natural Cellulosic Fiber from Coccinia indica Stem for Polymer Composites: Extraction and Characterization. J. Nat. Fibers 2021, 18, 644–652. [Google Scholar] [CrossRef]
- Vignesh, V.; Balaji, A.N.; Karthikeyan, M.K.V. Extraction and Characterization of New Cellulosic Fibers from Indian Mallow Stem: An Exploratory Investigation. Int. J. Polym. Anal. Charact. 2016, 21, 504–512. [Google Scholar] [CrossRef]
- Botanic Classification and Taxonomy. Available online: http://www.worldfloraonline.org/classification (accessed on 6 July 2021).
- Jhala, A.J.; Hall, L.M.; Hall, J.C. Potential Hybridization of Flax with Weedy and Wild Relatives: An Avenue for Movement of Engineered Genes? Crop Sci. 2008, 48, 825–840. [Google Scholar] [CrossRef]
- Yu, J.; Jin, W.; Wang, Y.; Yuan, Q. The Complete Chloroplast Genome of a Medicinal Plant, Abutilon theophrasti Medik. (Malvaceae). Mitochondrial DNA Part B 2020, 5, 3759–3760. [Google Scholar] [CrossRef]
- McPartland, J.M.; Hegman, W.; Long, T. Cannabis in Asia: Its Center of Origin and Early Cultivation, Based on a Synthesis of Subfossil Pollen and Archaeobotanical Studies. Veg. Hist. Archaeobot. 2019, 28, 691–702. [Google Scholar] [CrossRef]
- Benor, S. Molecular Phylogeny of the Genus Corchorus (Grewioideae, Malvaceae s.l.) Based on Nuclear RDNA ITS Sequences. Crop J. 2018, 6, 552–563. [Google Scholar] [CrossRef]
- Zommere, G.; Viļumsone, A.; Kalniņa, D.; Soliženko, R.; Stramkale, V. Comparative Analysis of Fiber Structure and Cellulose Contents in Flax and Hemp Fibres. Mater. Sci. Text. Cloth. Technol. 2013, 8, 96–104. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Characterizing Natural Cellulose Fibers from Velvet Leaf (Abutilon theophrasti) Stems. Bioresour. Technol. 2008, 99, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
- Tanmoy, A.; Alum, M.; Islam, M.; Farzana, T.; Khan, H. Jute (Corchorus olitorius Var. O-72) Stem Lignin: Variation in Content with Age. Bangladesh J. Bot. 2014, 43, 309–314. [Google Scholar] [CrossRef]
- Palla, A.H.; Khan, N.A.; Bashir, S.; Ur-Rehman, N.; Iqbal, J.; Gilani, A.-H. Pharmacological Basis for the Medicinal Use of Linum usitatissimum (Flaxseed) in Infectious and Non-Infectious Diarrhea. J. Ethnopharmacol. 2015, 160, 61–68. [Google Scholar] [CrossRef]
- Leson, G.; Pless, P. Hemp seed and hemp oil. In Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential; Haworth Press: Philadelphia, PA, USA, 2002; p. 411. [Google Scholar]
- Chigurupati, S.; Aladhadh, H.; Alhowail, A.; Krishnan Selvarajan, K.; Bhatia, S. Phytochemical Composition, Antioxidant and Antidiabetic Potential of Methanolic Extract from Corchorus olitorius Linn. Grown in Saudi Arabia. Med. Plants Int. J. Phytomed. Relat. Ind. 2020, 12, 71. [Google Scholar] [CrossRef]
- Jhala, A.J.; Hall, L.M. Flax (Linum usitatissimum L.): Current Uses and Future Applications. Aust. J. Basic Appl. Sci. 2010, 4, 4304–4312. [Google Scholar]
- Traoré, K.; Parkouda, C.; Savadogo, A.; Ba/Hama, F.; Kamga, R.; Traoré, Y. Effect of Processing Methods on the Nutritional Content of Three Traditional Vegetables Leaves: Amaranth, Black Nightshade and Jute Mallow. Am. J. Food Sci. Technol. 2019, 7, 223–226. [Google Scholar] [CrossRef]
- Samuel, F.O.; Ayoola, P.B.; Ejoh, S.I. Nutrient, Antinutrient and Sensory Evaluation of Corchorus olitorius Fruit. Ife J. Agric. 2020, 32, 13–20. [Google Scholar]
- Dinu, M.; Uivarosi, V.; Popescu, M.-L.; Radulescu, V.; Arama, C.C.; Nicolescu, O.; Ancuceanu, R.V. Proximate Composition and Some Physico-Chemical Properties of Abutilon theophrasti (Velvetleaf) Seed Oil. Rev. Chim. 2021, 61, 50–54. [Google Scholar]
- Ibrahim, T.A.; Fagbohun, E.D. Physicochemical Properties and In Vitro Antibacterial Activity of Corchorus olitorius Linn. Seed Oil. Life Sci. Leafl. 2011, 15, 499–505. [Google Scholar]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum Usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linger, P.; Müssig, J.; Fischer, H.; Kobert, J. Industrial Hemp (Cannabis sativa L.) Growing on Heavy Metal Contaminated Soil: Fibre Quality and Phytoremediation Potential. Ind. Crops Prod. 2002, 16, 33–42. [Google Scholar] [CrossRef]
- Ndlovu, S.; Pullabhotla, R.V.S.R.; Ntuli, N.R. Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil. Plants 2020, 9, 1200. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-Cancer Agent Against Breast Cancer Cells. J. Saudi Chem. Soc. 2021, 25, 101243. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Garnæs, J.; Tunjic, S.; Mokkapati, V.R.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; et al. Green Synthesis of Gold and Silver Nanoparticles from Cannabis sativa (Industrial Hemp) and Their Capacity for Biofilm Inhibition. Int. J. Nanomed. 2018, 13, 3571–3591. [Google Scholar] [CrossRef]
- El-Rafie, H.; Abd, S. Bioactivities of Gold and Iron Oxide Nanoparticles Biosynthesized from the Edible Plant Corchorus olitorius. Pharm. Lett. 2016, 8, 156–164. [Google Scholar]
- Smole, M.S.; Hribernik, S.; Kleinschek, K.S.; Kreže, T. Plant Fibres for Textile and Technical Applications; Intech Open: London, UK, 2013; ISBN 978-953-51-1184-9. [Google Scholar]
- Jonoobi, M.; Harun, J.; Tahir, P.M.; Shakeri, A.; SaifulAzry, S.; Makinejad, M.D. Physicochemical Characterization of Pulp and Nanofibers from Kenaf Stem. Mater. Lett. 2011, 65, 1098–1100. [Google Scholar] [CrossRef]
- Thomas, S.; Paul, S.A.; Pothan, L.A.; Deepa, B. Natural Fibres: Structure, Properties and Applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–42. ISBN 978-3-642-17370-7. [Google Scholar]
- Célino, A.; Freour, S.; Jacquemin, F.; Casari, P. The Hygroscopic Behavior of Plant Fibers: A Review. Front. Chem. 2014, 1, 43. [Google Scholar] [CrossRef] [Green Version]
- Kathirselvam, M.; Kumaravel, A.; Arthanarieswaran, V.P.; Saravanakumar, S.S. Assessment of Cellulose in Bark Fibers of Thespesia populnea: Influence of Stem Maturity on Fiber Characterization. Carbohydr. Polym. 2019, 212, 439–449. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi Júnior, H.L.; Zattera, A.J. Native Cellulose: Structure, Characterization and Thermal Properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [Green Version]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Ventura-Cruz, S.; Tecante, A. Extraction and Characterization of Cellulose Nanofibers from Rose Stems (Rosa spp.). Carbohydr. Polym. 2019, 220, 53–59. [Google Scholar] [CrossRef]
- Xie, J.; Hse, C.-Y.; De Hoop, C.F.; Hu, T.; Qi, J.; Shupe, T.F. Isolation and Characterization of Cellulose Nanofibers from Bamboo Using Microwave Liquefaction Combined with Chemical Treatment and Ultrasonication. Carbohydr. Polym. 2016, 151, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Gañán, P.; Cruz, J.; Garbizu, S.; Arbelaiz, A.; Mondragon, I. Stem and Bunch Banana Fibers from Cultivation Wastes: Effect of Treatments on Physico-Chemical Behavior. J. Appl. Polym. Sci. 2004, 94, 1489–1495. [Google Scholar] [CrossRef]
- Gorgulu, S.T.; Dogan, M.; Severcan, F. The Characterization and Differentiation of Higher Plants by Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Dai, D.; Huang, B. Fourier Transform Infrared Spectroscopy for Natural Fibres; Intech Open: London, UK, 2012; ISBN 978-953-51-0594-7. [Google Scholar]
- Academic Press. Hortus Agrobotanicus Napocensis—Index Seminum; Academic Press: Cluj-Napoca, Romania, 2021. [Google Scholar]
- EU Common Catalogue of Varieties of Agricultural Plant Species. Available online: https://ec.europa.eu/food/system/files/2021-02/plant-variety-catalogues_agricultural-plant-species.pdf (accessed on 11 July 2021).
- The International Plant Exchange Network. Available online: https://www.bgci.org/our-work/policy-and-advocacy/access-and-benefit-sharing/the-international-plant-exchange-network/ (accessed on 4 July 2021).
- Climate Data for Cluj-Napoca, Romania Weather History. Available online: https://www.wunderground.com/history/daily/ro/cluj-napoca (accessed on 11 July 2021).
- Tutiempo Network Climate Data for Cluj-Napoca, Romania Weather Station 151200. Available online: https://en.tutiempo.net/climate/ws-151200.html (accessed on 11 July 2021).
- Crișan, I.; Vidican, R.; Olar, L.; Stoian, V.; Morea, A.; Ștefan, R. Screening for Changes on Iris germanica L. Rhizomes Following Inoculation with Arbuscular Mycorrhiza Using Fourier Transform Infrared Spectroscopy. Agronomy 2019, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the Cell Wall and Cellulose Content of Developing Cotton Fibers Investigated by FTIR Spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Suryanto, H.; Marsyahyo, E.; Irawan, Y.S.; Soenoko, R. Morphology, Structure, and Mechanical Properties of Natural Cellulose Fiber from Mendong Grass (Fimbristylis globulosa). J. Nat. Fibers 2014, 11, 333–351. [Google Scholar] [CrossRef]
- Longaresi, R.H.; de Menezes, A.J.; Pereira-da-Silva, M.A.; Baron, D.; Mathias, S.L. The Maize Stem as a Potential Source of Cellulose Nanocrystal: Cellulose Characterization from Its Phenological Growth Stage Dependence. Ind. Crops Prod. 2019, 133, 232–240. [Google Scholar] [CrossRef]
- Dalmis, R.; Kilic, G.B.; Seki, Y.; Koktas, S.; Keskin, O.Y. Characterization of a Novel Natural Cellulosic Fiber Extracted from the Stem of Chrysanthemum morifolium. Cellulose 2020, 27, 8621–8634. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.S.; Mothudi, B.M.; Kommula, V.P.; Zhang, J.; Zhang, J.; Rajulu, A.V. Extraction and Characterization of Cellulose Single Fibers from Native African Napier Grass. Carbohydr. Polym. 2018, 188, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, Y.; Xu, J.; Xu, N.; He, Y. Quantitative Visualization of Lignocellulose Components in Transverse Sections of Moso Bamboo Based on FTIR Macro- and Micro-Spectroscopy Coupled with Chemometrics. Biotechnol. Biofuels 2018, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, T.; Kumaravel, A.; Palanivelu, R. Extraction and Characterization of Natural Cellulosic Fiber from Passiflora foetida Stem. Int. J. Polym. Anal. Charact. 2016, 21, 478–485. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Selvaraj, G.; Wei, Y.; King, J. Role of Lignification in Plant Defense. Plant Signal. Behav. 2009, 4, 158–159. [Google Scholar] [CrossRef] [Green Version]
- Cael, J.; Gardner, K.; Koenig, J.; Blackwell, J. Infrared and Raman Spectroscopy of Carbohydrates. Paper V. Normal Coordinate Analysis of Cellulose I. J. Chem. Phys. 1975, 62, 1145–1153. [Google Scholar] [CrossRef]
- Makarem, M.; Lee, C.M.; Kafle, K.; Huang, S.; Chae, I.; Yang, H.; Kubicki, J.D.; Kim, S.H. Probing Cellulose Structures with Vibrational Spectroscopy. Cellulose 2019, 26, 35–79. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Wu, T.; Wang, X.; Cheng, X.; Li, D. A Comparative Study on the Characterization of Nanofibers with Cellulose I, I/II, and II Polymorphs from Wood. Polymers 2019, 11, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, M.; Mannu, A.; Panzeri, W.; Theeuwen, C.H.J.; Mele, A. An Integrated Approach to Optimizing Cellulose Mercerization. Polymers 2020, 12, 1559. [Google Scholar] [CrossRef]
- Zlenko, D.V.; Vtyurina, D.N.; Usachev, S.V.; Skoblin, A.A.; Mikhaleva, M.G.; Politenkova, G.G.; Nikolsky, N.S.; Stovbun, V.S. On the orientation of the chains in the mercerized cellulose. Sci. Rep. 2021, 11, 8765. [Google Scholar] [CrossRef] [PubMed]
Plant | | | | |
---|---|---|---|---|
Common Name | Flax | Velvet Leaf | Hemp | Jute |
Species [13] | Linum usitatissimum L. | Abutilon theophrasti Medik. | Cannabis sativa L. | Corchorus olitorius L. |
Botanic Family [13] | Linaceae | Malvaceae | Cannabaceae | Malvaceae |
Center of Origin | probably Egypt [14] | Southern Asia [15] | Central Asia [16] | Africa [17] |
Fibers | cellulose 64–75%, lignin 4–7% [18] | cellulose 69%, lignin 17% [19] | cellulose 57–77%, lignin 9–13% [19] | cellulose 59–61%, lignin 11–13% [20] |
Medicinal | diarrhea and gastrointestinal infections [21] | fever, stomachaches [15] | analgesic, sores, skin disease [22] | anti-oxidant and anti-diabetic effect [23] |
Edible | seeds [24] | leaves [15] | seeds [22] | leaves [25], fruits [26] |
Oil | seed oil [24] | seed oil [27] | seed oil [22] | seed oil [28] |
Phytoremediation | various heavy metals [29] | - | Cd, Pb, Ni [30] | Cd [31] |
Biosynthesis of Nanoparticles (NPs) | Au NPs [32] | - | Au, Ag-NPs [33] | Au, Fe-NPs [34] |
Sample | Accession (IPEN 1 Code or Provenance of the Seeds) |
---|---|
Linum usitatissimum L. ‘Domneşti’ | XX-0-CLA-3143 [47] |
Abutilon theophrasti Medik. | XX-0-CLA-3051 [47] |
Cannabis sativa L. ‘Succesiv’ | Agricultural Research and Development Station from Secuieni, Romania; identification in European Common catalogue of varieties of agricultural plant species: 85/RO 1018 [48] |
Cannabis sativa L. ‘Zenit’ | Agricultural Research and Development Station from Secuieni, Romania; identification in European Common catalogue of varieties of agricultural plant species: 85/RO 1018 [48] |
Corchorus olitorius L. | Botanical Garden of Graz University, Austria (GZU) 2; XX-0-GZU-07 100734 [47] |
Corchorus olitorius L. | Jardin des Plantes, Nantes, France (NTM) 2; XX-0-CLA-4158 [47] |
Corchorus olitorius L. | Botanical Garden of Szeged University, Hungary (SZTE) 2; XX-0-CLA-3515 [47] |
Standard (cellulose) | Paper |
Peak (cm−1) | |||||
---|---|---|---|---|---|
Cellulose (Standard) | Linum usitatissimum | Abutilon theophrasti | Cannabis sativa ‘Succesiv’ and ‘Zenit’ | Corchorus olitorius (3 Accessions) | Assignment and Sources |
897 | 897 | 897 | 898 | 896–897 | C–O–C [10]; β-glycosidic link of cellulose and hemicellulose [3,53,54,55,56]; amorphous region of cellulose [40]; |
1059 | 1057 | 1051 | 1052–1060 | 1053–1056 | C–O stretching [10,53]; |
1160 | 1157 | 1155 | 1154–1156 | 1155–1157 | C–O–C anti-symmetrical stretching [53]; |
- | 1252 | 1245 | 1244–1245 | 1246–1247 | C–O stretching of acetyl group of lignin [3,8,36,43,54,56,57]; stretching of carbonyl group (-C=O) of lignin [59]; |
1318 | 1318 | 1320 | 1317–1318 | 1317–1319 | CH2 rocking [53]; C–O from aromatic ring of polysaccharides [3]; |
1374 | 1374 | 1375 | 1374–1375 | 1383–1384 | C–H bending [3,53]; C–H deformation vibration in cellulose and hemicellulose [58]; |
1428 | 1427 | 1423 | 1423–1426 | 1420 | CH2 scissoring vibration [53] from cellulose and hemicellulose [58]; CH2 symmetric bending in cellulose [3,56]; |
1508 | 1509 | 1508 | 1508 | 1508–1509 | stretching vibration from aromatic ring of lignin [7,43,56]; |
- | 1624 | 1623 | 1625–1628 | 1620–1621 | C=C, lignin [10]; C=O, amide I [53]; |
1639 | - | - | - | - | O–H bending from adsorbed water [53]; |
- | 1738 | 1739 | 1739 | 1740 | C=O stretching [10,53] from hemicellulose [7,8,11,36,39,42,43,44,54,57,58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vârban, R.; Crișan, I.; Vârban, D.; Ona, A.; Olar, L.; Stoie, A.; Ștefan, R. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Appl. Sci. 2021, 11, 8570. https://doi.org/10.3390/app11188570
Vârban R, Crișan I, Vârban D, Ona A, Olar L, Stoie A, Ștefan R. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Applied Sciences. 2021; 11(18):8570. https://doi.org/10.3390/app11188570
Chicago/Turabian StyleVârban, Rodica, Ioana Crișan, Dan Vârban, Andreea Ona, Loredana Olar, Andrei Stoie, and Răzvan Ștefan. 2021. "Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute" Applied Sciences 11, no. 18: 8570. https://doi.org/10.3390/app11188570
APA StyleVârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., & Ștefan, R. (2021). Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Applied Sciences, 11(18), 8570. https://doi.org/10.3390/app11188570