Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Both CEREC PrimeScan and Medit i700 IOSs generated digital impressions with the highest accuracy of all the investigated IOSs;
- Even if there is a time gap of +7 years between Omnicam and the first two mentioned IOSs, the difference in trueness and precision was low ( approx. 10 µm). The Planscan IOS showed the lowest accuracy, even when compared with Omnicam IOS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IOS | Intraoral Scanner |
References
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Son, K.; Lee, K.B. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows. Appl. Sci. 2019, 9, 2778. [Google Scholar] [CrossRef] [Green Version]
- Park, G.H.; Son, K.; Lee, K.B. Feasibility of using an intraoral scanner for a complete-arch digital scan. J. Prosthet. Dent. 2019, 121, 803–810. [Google Scholar] [CrossRef]
- Mandelli, F.; Ferrini, F.; Gastaldi, G.; Gherlone, E.; Ferrari, M. Improvement of a Digital Impression with Conventional Materials: Overcoming Intraoral Scanner Limitations. Int. J. Prosthodont. 2017, 30, 373–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaspyridakos, P.; Kang, K.; DeFuria, C.; Amin, S.; Kudara, Y.; Weber, H.P. Digital workflow in full-arch implant rehabilitation with segmented minimally veneered monolithic zirconia fixed dental prostheses: 2-year clinical follow-up. J. Esthet. Restor. Dent. 2018, 30, 5–13. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Diagnostic accuracy and measurement sensitivity of dig- ital models for orthodontic purposes: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 161–170. [Google Scholar] [CrossRef]
- Flügge, T.; van der Meer, W.J.; Gonzalez, B.G.; Vach, K.; Wismeijer, D.; Wang, P. The accuracy of different dental impression techniques for implant-supported dental prostheses: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 374–392. [Google Scholar] [CrossRef] [Green Version]
- Nedelcu, R.; Olsson, P.; Nyström, I.; Rydén, J.; Thor, A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. J. Dent. 2018, 69, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Solaberrieta, E.; Garmendia, A.; Brizuela, A.; Otegi, J.R.; Pradies, G.; Szentpétery, A. Intraoral Digital Impressions for Virtual Occlusal Records: Section Quantity and Dimensions. Biomed. Res. Int. 2016, 2016, 7173824. [Google Scholar] [CrossRef] [Green Version]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Atieh, M.A.; Ritter, A.V.; Ko, C.C.; Duqum, I. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance. J. Prosthet. Dent. 2017, 118, 400–405. [Google Scholar] [CrossRef]
- Gan, N.; Xiong, Y.; Jiao, T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS ONE 2016, 11, e0158800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ender, A.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016, 115, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190.e12. [Google Scholar] [CrossRef] [PubMed]
- Revell, G.; Simon, B.; Mennito, A.; Evans, Z.P.; Renne, W.; Ludlow, M.; Vág, J. Evaluation of complete-arch implant scanning with 5 different intraoral scanners in terms of trueness and operator experience. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Burzynski, J.A.; Firestone, A.R.; Beck, F.M.; Fields, H.W., Jr.; Deguchi, T. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.medit.com/dental-clinic-i700 (accessed on 15 June 2021).
- Available online: https://universadent.com/product/medit-t500/ (accessed on 15 June 2021).
- Yang, X.; Lv, P.; Liu, Y.; Si, W.; Feng, H. Accuracy of Digital Impressions and Fitness of Single Crowns Based on Digital Impressions. Materials 2015, 8, 3945–3957. [Google Scholar] [CrossRef] [PubMed]
- Persson, A.S.; Odén, A.; Andersson, M.; Sandborgh-Englund, G. Digitization of simulated clinical dental impressions: Virtual three-dimensional analysis of exactness. Dent. Mater. 2009, 25, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Mutwalli, H.; Braian, M.; Mahmood, D.; Larsson, C. Trueness and Precision of Three-Dimensional Digitizing Intraoral Devices. Int. J. Dent. 2018, 2018, 5189761. [Google Scholar] [CrossRef] [Green Version]
- Diker, B.; Tak, Ö. Comparing the accuracy of six intraoral scanners on prepared teeth and effect of scanning sequence. J. Adv. Prosthodont. 2020, 12, 299–306. [Google Scholar] [CrossRef]
- Ender, A.; Zimmermann, M.; Mehl, A. Accuracy of complete- and partial-arch impressions of actual intraoral scanning systems in vitro. Int. J. Comput. Dent. 2019, 22, 11–19. [Google Scholar] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar] [CrossRef]
- Homsy, F.R.; Özcan, M.; Khoury, M.; Majzoub, Z.A.K. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J. Prosthet. Dent. 2018, 119, 783–790. [Google Scholar] [CrossRef]
- Arakida, T.; Kanazawa, M.; Iwaki, M.; Suzuki, T.; Minakuchi, S. Evaluating the influence of ambient light on scanning trueness, precision, and time of intra oral scanner. J. Prosthodont. Res. 2018, 62, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Park, H.N.; Lim, Y.J.; Yi, W.J.; Han, J.S.; Lee, S.P. A comparison of the accuracy of intraoral scanners using an intraoral environment simulator. J. Adv. Prosthodont. 2018, 10, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.; Attin, T.; Mehl, A. Influence of material surface on the scanning error of a powder-free 3D measuring system. Clin. Oral Investig. 2015, 19, 2035–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupagne, L.; Tapie, L.; Lebon, N.; Mawussi, B. Comparison of the acquisition accuracy and digitizing noise of 9 intraoral and extraoral scanners: An objective method. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Latham, J.; Ludlow, M.; Mennito, A.; Kelly, A.; Evans, Z.; Renne, W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J. Prosthet. Dent. 2020, 123, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, K.; Jin, M.U.; Lee, K.B. Feasibility of using an intraoral scanner for a complete-arch digital scan, part 2: A comparison of scan strategies. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
IOS | Manufacturer | Software | Features |
---|---|---|---|
CEREC Primescan (2019) | Dentsply-Sirona Dental Systems, Bensheim, Germany | Sirona Connect 5.1 (2019) | High-resolution sensors and shortwave light with optical high-frequency contrast analysis for dynamic deep scan (20 mm) |
Medit i700 (2021) | Medit, Seoul, South Korea | Medit Link 2.4.4 (2021) | 3D in Motion Video Technology/3D Full Color Streaming Capture |
CEREC Omnicam (2012) | Dentsply-Sirona Dental Systems, Bensheim, Germany | Sirona Connect 4.6.0 (2018) | Confocal microscopy and active triangulation with a white LED light source |
Planmeca Planscan (2014) | E4D Technologies, LLC, Richardson, TX, USA | Planmeca Romexis 4.6.2 (2018) | Optical coherence tomography and confocal microscopy |
Primescan | i700 | Omnicam | PlanScan | |
---|---|---|---|---|
M1 | 21.7 µm | 25.6 µm | 40.4 µm | 76 µm |
M2 | 23.4 µm | 25.5 µm | 31.7 µm | 68.5 µm |
M3 | 33.3 µm | 26.9 µm | 32.2 µm | 66.6 µm |
M4 | 26.1 µm | 23.9 µm | 43.4 µm | 96.1 µm |
M5 | 21.3 µm | 26.8 µm | 28.5 µm | 86.5 µm |
M6 | 21.6 µm | 25.7 µm | 40.1 µm | 75.6 µm |
M7 | 23.1 µm | 24 µm | 31.5 µm | 67.5 µm |
M8 | 26 µm | 22.8 µm | 32.4 µm | 64.8 µm |
M9 | 24.4 µm | 23.3 µm | 30.1 µm | 89.8 µm |
M10 | 21.1 µm | 25.8 µm | 40.2 µm | 85.2 µm |
Median (IQR) | 23.25 (3.97) µm | 25.55 (1.85) µm | 32.3 (8.62) µm | 75.8 (18.42) µm |
Primescan | i700 | Omnicam | PlanScan | |
---|---|---|---|---|
M1 | 4.9 µm | 7.6 µm | 15.4 µm | 28.2 µm |
M2 | 6.6 µm | 11.3 µm | 17.1 µm | 26.7 µm |
M3 | 6.5 µm | 13.8 µm | 37.9 µm | 73.5 µm |
M4 | 6.5 µm | 7.6 µm | 15.9 µm | 60.8 µm |
M5 | 6.8 µm | 11.4 µm | 17.4 µm | 74.2 µm |
M6 | 5.8 µm | 7.7 µm | 15.8 µm | 64.2 µm |
M7 | 4.7 µm | 7.6 µm | 33.4 µm | 78.9 µm |
M8 | 6.4 µm | 13.1 µm | 15.3 µm | 61.4 µm |
M9 | 7.3 µm | 14 µm | 13.1 µm | 29.3 µm |
M10 | 7.1 µm | 14.7 µm | 12.4 µm | 27.8 µm |
M11 | 6 µm | 9.1 µm | 17.8 µm | 90.1 µm |
M12 | 7.1 µm | 8 µm | 13.4 µm | 97 µm |
M13 | 6.1 µm | 7.9 µm | 13.7 µm | 60.8 µm |
M14 | 7.2 µm | 9.1 µm | 15.1 µm | 90.1 µm |
M15 | 7.3 µm | 11.2 µm | 12.1 µm | 64.2 µm |
M16 | 6.8 µm | 14.5 µm | 13.4 µm | 73.5 µm |
M17 | 5.9 µm | 9.4 µm | 12.3 µm | 91.1 µm |
M18 | 6.8 µm | 11.7 µm | 33.7 µm | 73.3 µm |
M19 | 5.7 µm | 9.1 µm | 12.9 µm | 72.5 µm |
M20 | 5.8 µm | 7.3 µm | 13.4 µm | 22.2 µm |
M21 | 7.8 µm | 5.4 µm | 17.4 µm | 74.4 µm |
M22 | 6.4 µm | 7.8 µm | 15.4 µm | 61.7 µm |
M23 | 7.1 µm | 14.7 µm | 17.1 µm | 29.1 µm |
M24 | 6.5 µm | 8.1 µm | 17.3 µm | 74.3 µm |
M25 | 7.3 µm | 5.4 µm | 14.5 µm | 22.2 µm |
M26 | 4.9 µm | 13.1 µm | 15.2 µm | 73.5 µm |
M27 | 5.3 µm | 14.4 µm | 32.1 µm | 90.1 µm |
M28 | 7.3 µm | 11.2 µm | 32.9 µm | 73.5 µm |
M29 | 6 µm | 5.4 µm | 13.3 µm | 77.1 µm |
M30 | 7.2 µm | 5.9 µm | 15.9 µm | 22.9 µm |
M31 | 6.6 µm | 7.4 µm | 13.1 µm | 60.4 µm |
M32 | 4.7 µm | 7.8 µm | 17.2 µm | 97.8 µm |
M33 | 4.8 µm | 11.3 µm | 33.2 µm | 61.5 µm |
M34 | 5.8 µm | 11.1 µm | 13.4 µm | 62.6 µm |
M35 | 7.3 µm | 7.5 µm | 12.3 µm | 75.2 µm |
M36 | 5.9 µm | 7.9 µm | 15.6 µm | 29.3 µm |
M37 | 6.5 µm | 9.2 µm | 17.9 µm | 91.4 µm |
M38 | 6.6 µm | 8 µm | 18.3 µm | 64.7 µm |
M39 | 7.1 µm | 9.1 µm | 15.9 µm | 78.9 µm |
M40 | 4.8 µm | 7.3 µm | 12.3 µm | 22.5 µm |
M41 | 4.9 µm | 13.2 µm | 13.4 µm | 24.3 µm |
M42 | 5.7 µm | 11.2 µm | 14.5 µm | 60.1 µm |
M43 | 6.5 µm | 14.6 µm | 13.6 µm | 68 µm |
M44 | 7.1 µm | 9.3 µm | 33.4 µm | 90.3 µm |
M45 | 6.4 µm | 7.4 µm | 13.4 µm | 74.3 µm |
Median (IQR) | 6.5 (1.3) µm | 9.1 (3.8) µm | 15.4 (4) µm | 68 (15.1) µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jivănescu, A.; Bara, A.; Faur, A.-B.; Rotar, R.N. Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Appl. Sci. 2021, 11, 8280. https://doi.org/10.3390/app11188280
Jivănescu A, Bara A, Faur A-B, Rotar RN. Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Applied Sciences. 2021; 11(18):8280. https://doi.org/10.3390/app11188280
Chicago/Turabian StyleJivănescu, Anca, Adrian Bara, Andrei-Bogdan Faur, and Raul Nicolae Rotar. 2021. "Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study" Applied Sciences 11, no. 18: 8280. https://doi.org/10.3390/app11188280
APA StyleJivănescu, A., Bara, A., Faur, A.-B., & Rotar, R. N. (2021). Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Applied Sciences, 11(18), 8280. https://doi.org/10.3390/app11188280