Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Both CEREC PrimeScan and Medit i700 IOSs generated digital impressions with the highest accuracy of all the investigated IOSs;
- Even if there is a time gap of +7 years between Omnicam and the first two mentioned IOSs, the difference in trueness and precision was low ( approx. 10 µm). The Planscan IOS showed the lowest accuracy, even when compared with Omnicam IOS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IOS | Intraoral Scanner |
References
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Son, K.; Lee, K.B. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows. Appl. Sci. 2019, 9, 2778. [Google Scholar] [CrossRef] [Green Version]
- Park, G.H.; Son, K.; Lee, K.B. Feasibility of using an intraoral scanner for a complete-arch digital scan. J. Prosthet. Dent. 2019, 121, 803–810. [Google Scholar] [CrossRef]
- Mandelli, F.; Ferrini, F.; Gastaldi, G.; Gherlone, E.; Ferrari, M. Improvement of a Digital Impression with Conventional Materials: Overcoming Intraoral Scanner Limitations. Int. J. Prosthodont. 2017, 30, 373–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaspyridakos, P.; Kang, K.; DeFuria, C.; Amin, S.; Kudara, Y.; Weber, H.P. Digital workflow in full-arch implant rehabilitation with segmented minimally veneered monolithic zirconia fixed dental prostheses: 2-year clinical follow-up. J. Esthet. Restor. Dent. 2018, 30, 5–13. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Diagnostic accuracy and measurement sensitivity of dig- ital models for orthodontic purposes: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 161–170. [Google Scholar] [CrossRef]
- Flügge, T.; van der Meer, W.J.; Gonzalez, B.G.; Vach, K.; Wismeijer, D.; Wang, P. The accuracy of different dental impression techniques for implant-supported dental prostheses: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 374–392. [Google Scholar] [CrossRef] [Green Version]
- Nedelcu, R.; Olsson, P.; Nyström, I.; Rydén, J.; Thor, A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. J. Dent. 2018, 69, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Solaberrieta, E.; Garmendia, A.; Brizuela, A.; Otegi, J.R.; Pradies, G.; Szentpétery, A. Intraoral Digital Impressions for Virtual Occlusal Records: Section Quantity and Dimensions. Biomed. Res. Int. 2016, 2016, 7173824. [Google Scholar] [CrossRef] [Green Version]
- Mangano, F.; Gandolfi, A.; Luongo, G.; Logozzo, S. Intraoral scanners in dentistry: A review of the current literature. BMC Oral Health 2017, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Atieh, M.A.; Ritter, A.V.; Ko, C.C.; Duqum, I. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance. J. Prosthet. Dent. 2017, 118, 400–405. [Google Scholar] [CrossRef]
- Gan, N.; Xiong, Y.; Jiao, T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS ONE 2016, 11, e0158800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ender, A.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016, 115, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190.e12. [Google Scholar] [CrossRef] [PubMed]
- Revell, G.; Simon, B.; Mennito, A.; Evans, Z.P.; Renne, W.; Ludlow, M.; Vág, J. Evaluation of complete-arch implant scanning with 5 different intraoral scanners in terms of trueness and operator experience. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Burzynski, J.A.; Firestone, A.R.; Beck, F.M.; Fields, H.W., Jr.; Deguchi, T. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.medit.com/dental-clinic-i700 (accessed on 15 June 2021).
- Available online: https://universadent.com/product/medit-t500/ (accessed on 15 June 2021).
- Yang, X.; Lv, P.; Liu, Y.; Si, W.; Feng, H. Accuracy of Digital Impressions and Fitness of Single Crowns Based on Digital Impressions. Materials 2015, 8, 3945–3957. [Google Scholar] [CrossRef] [PubMed]
- Persson, A.S.; Odén, A.; Andersson, M.; Sandborgh-Englund, G. Digitization of simulated clinical dental impressions: Virtual three-dimensional analysis of exactness. Dent. Mater. 2009, 25, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Mutwalli, H.; Braian, M.; Mahmood, D.; Larsson, C. Trueness and Precision of Three-Dimensional Digitizing Intraoral Devices. Int. J. Dent. 2018, 2018, 5189761. [Google Scholar] [CrossRef] [Green Version]
- Diker, B.; Tak, Ö. Comparing the accuracy of six intraoral scanners on prepared teeth and effect of scanning sequence. J. Adv. Prosthodont. 2020, 12, 299–306. [Google Scholar] [CrossRef]
- Ender, A.; Zimmermann, M.; Mehl, A. Accuracy of complete- and partial-arch impressions of actual intraoral scanning systems in vitro. Int. J. Comput. Dent. 2019, 22, 11–19. [Google Scholar] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar] [CrossRef]
- Homsy, F.R.; Özcan, M.; Khoury, M.; Majzoub, Z.A.K. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J. Prosthet. Dent. 2018, 119, 783–790. [Google Scholar] [CrossRef]
- Arakida, T.; Kanazawa, M.; Iwaki, M.; Suzuki, T.; Minakuchi, S. Evaluating the influence of ambient light on scanning trueness, precision, and time of intra oral scanner. J. Prosthodont. Res. 2018, 62, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Park, H.N.; Lim, Y.J.; Yi, W.J.; Han, J.S.; Lee, S.P. A comparison of the accuracy of intraoral scanners using an intraoral environment simulator. J. Adv. Prosthodont. 2018, 10, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.; Attin, T.; Mehl, A. Influence of material surface on the scanning error of a powder-free 3D measuring system. Clin. Oral Investig. 2015, 19, 2035–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupagne, L.; Tapie, L.; Lebon, N.; Mawussi, B. Comparison of the acquisition accuracy and digitizing noise of 9 intraoral and extraoral scanners: An objective method. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Latham, J.; Ludlow, M.; Mennito, A.; Kelly, A.; Evans, Z.; Renne, W. Effect of scan pattern on complete-arch scans with 4 digital scanners. J. Prosthet. Dent. 2020, 123, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, K.; Jin, M.U.; Lee, K.B. Feasibility of using an intraoral scanner for a complete-arch digital scan, part 2: A comparison of scan strategies. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]




| IOS | Manufacturer | Software | Features |
|---|---|---|---|
| CEREC Primescan (2019) | Dentsply-Sirona Dental Systems, Bensheim, Germany | Sirona Connect 5.1 (2019) | High-resolution sensors and shortwave light with optical high-frequency contrast analysis for dynamic deep scan (20 mm) |
| Medit i700 (2021) | Medit, Seoul, South Korea | Medit Link 2.4.4 (2021) | 3D in Motion Video Technology/3D Full Color Streaming Capture |
| CEREC Omnicam (2012) | Dentsply-Sirona Dental Systems, Bensheim, Germany | Sirona Connect 4.6.0 (2018) | Confocal microscopy and active triangulation with a white LED light source |
| Planmeca Planscan (2014) | E4D Technologies, LLC, Richardson, TX, USA | Planmeca Romexis 4.6.2 (2018) | Optical coherence tomography and confocal microscopy |
| Primescan | i700 | Omnicam | PlanScan | |
|---|---|---|---|---|
| M1 | 21.7 µm | 25.6 µm | 40.4 µm | 76 µm |
| M2 | 23.4 µm | 25.5 µm | 31.7 µm | 68.5 µm |
| M3 | 33.3 µm | 26.9 µm | 32.2 µm | 66.6 µm |
| M4 | 26.1 µm | 23.9 µm | 43.4 µm | 96.1 µm |
| M5 | 21.3 µm | 26.8 µm | 28.5 µm | 86.5 µm |
| M6 | 21.6 µm | 25.7 µm | 40.1 µm | 75.6 µm |
| M7 | 23.1 µm | 24 µm | 31.5 µm | 67.5 µm |
| M8 | 26 µm | 22.8 µm | 32.4 µm | 64.8 µm |
| M9 | 24.4 µm | 23.3 µm | 30.1 µm | 89.8 µm |
| M10 | 21.1 µm | 25.8 µm | 40.2 µm | 85.2 µm |
| Median (IQR) | 23.25 (3.97) µm | 25.55 (1.85) µm | 32.3 (8.62) µm | 75.8 (18.42) µm |
| Primescan | i700 | Omnicam | PlanScan | |
|---|---|---|---|---|
| M1 | 4.9 µm | 7.6 µm | 15.4 µm | 28.2 µm |
| M2 | 6.6 µm | 11.3 µm | 17.1 µm | 26.7 µm |
| M3 | 6.5 µm | 13.8 µm | 37.9 µm | 73.5 µm |
| M4 | 6.5 µm | 7.6 µm | 15.9 µm | 60.8 µm |
| M5 | 6.8 µm | 11.4 µm | 17.4 µm | 74.2 µm |
| M6 | 5.8 µm | 7.7 µm | 15.8 µm | 64.2 µm |
| M7 | 4.7 µm | 7.6 µm | 33.4 µm | 78.9 µm |
| M8 | 6.4 µm | 13.1 µm | 15.3 µm | 61.4 µm |
| M9 | 7.3 µm | 14 µm | 13.1 µm | 29.3 µm |
| M10 | 7.1 µm | 14.7 µm | 12.4 µm | 27.8 µm |
| M11 | 6 µm | 9.1 µm | 17.8 µm | 90.1 µm |
| M12 | 7.1 µm | 8 µm | 13.4 µm | 97 µm |
| M13 | 6.1 µm | 7.9 µm | 13.7 µm | 60.8 µm |
| M14 | 7.2 µm | 9.1 µm | 15.1 µm | 90.1 µm |
| M15 | 7.3 µm | 11.2 µm | 12.1 µm | 64.2 µm |
| M16 | 6.8 µm | 14.5 µm | 13.4 µm | 73.5 µm |
| M17 | 5.9 µm | 9.4 µm | 12.3 µm | 91.1 µm |
| M18 | 6.8 µm | 11.7 µm | 33.7 µm | 73.3 µm |
| M19 | 5.7 µm | 9.1 µm | 12.9 µm | 72.5 µm |
| M20 | 5.8 µm | 7.3 µm | 13.4 µm | 22.2 µm |
| M21 | 7.8 µm | 5.4 µm | 17.4 µm | 74.4 µm |
| M22 | 6.4 µm | 7.8 µm | 15.4 µm | 61.7 µm |
| M23 | 7.1 µm | 14.7 µm | 17.1 µm | 29.1 µm |
| M24 | 6.5 µm | 8.1 µm | 17.3 µm | 74.3 µm |
| M25 | 7.3 µm | 5.4 µm | 14.5 µm | 22.2 µm |
| M26 | 4.9 µm | 13.1 µm | 15.2 µm | 73.5 µm |
| M27 | 5.3 µm | 14.4 µm | 32.1 µm | 90.1 µm |
| M28 | 7.3 µm | 11.2 µm | 32.9 µm | 73.5 µm |
| M29 | 6 µm | 5.4 µm | 13.3 µm | 77.1 µm |
| M30 | 7.2 µm | 5.9 µm | 15.9 µm | 22.9 µm |
| M31 | 6.6 µm | 7.4 µm | 13.1 µm | 60.4 µm |
| M32 | 4.7 µm | 7.8 µm | 17.2 µm | 97.8 µm |
| M33 | 4.8 µm | 11.3 µm | 33.2 µm | 61.5 µm |
| M34 | 5.8 µm | 11.1 µm | 13.4 µm | 62.6 µm |
| M35 | 7.3 µm | 7.5 µm | 12.3 µm | 75.2 µm |
| M36 | 5.9 µm | 7.9 µm | 15.6 µm | 29.3 µm |
| M37 | 6.5 µm | 9.2 µm | 17.9 µm | 91.4 µm |
| M38 | 6.6 µm | 8 µm | 18.3 µm | 64.7 µm |
| M39 | 7.1 µm | 9.1 µm | 15.9 µm | 78.9 µm |
| M40 | 4.8 µm | 7.3 µm | 12.3 µm | 22.5 µm |
| M41 | 4.9 µm | 13.2 µm | 13.4 µm | 24.3 µm |
| M42 | 5.7 µm | 11.2 µm | 14.5 µm | 60.1 µm |
| M43 | 6.5 µm | 14.6 µm | 13.6 µm | 68 µm |
| M44 | 7.1 µm | 9.3 µm | 33.4 µm | 90.3 µm |
| M45 | 6.4 µm | 7.4 µm | 13.4 µm | 74.3 µm |
| Median (IQR) | 6.5 (1.3) µm | 9.1 (3.8) µm | 15.4 (4) µm | 68 (15.1) µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jivănescu, A.; Bara, A.; Faur, A.-B.; Rotar, R.N. Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Appl. Sci. 2021, 11, 8280. https://doi.org/10.3390/app11188280
Jivănescu A, Bara A, Faur A-B, Rotar RN. Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Applied Sciences. 2021; 11(18):8280. https://doi.org/10.3390/app11188280
Chicago/Turabian StyleJivănescu, Anca, Adrian Bara, Andrei-Bogdan Faur, and Raul Nicolae Rotar. 2021. "Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study" Applied Sciences 11, no. 18: 8280. https://doi.org/10.3390/app11188280
APA StyleJivănescu, A., Bara, A., Faur, A.-B., & Rotar, R. N. (2021). Is There a Significant Difference in Accuracy of Four Intraoral Scanners for Short-Span Fixed Dental Prosthesis? A Comparative In Vitro Study. Applied Sciences, 11(18), 8280. https://doi.org/10.3390/app11188280

