Analysis of the Scattering from a Two Stacked Thin Resistive Disks Resonator by Means of the Helmholtz–Galerkin Regularizing Technique
Abstract
1. Introduction
2. Formulation of the Problem and Proposed Solution
3. Numerical Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Senior, T.B.A.; Volakis, J.L. Approximate Boundary Conditions in Electromagnetics; Institution of Electrical Engineers: London, UK, 1995. [Google Scholar]
- Karam, M.A.; Fung, A.K.; Antar, Y.M. Electromagnetic wave scattering from some vegetation samples. IEEE Trans. Geosci. Remote Sens. 1988, 26, 799–808. [Google Scholar] [CrossRef]
- Koh, I.S.; Sarabandi, K. A new approximate solution for scattering by thin dielectric disks of arbitrary size and shape. IEEE Trans. Antennas Propag. 2005, 53, 1920–1926. [Google Scholar] [CrossRef][Green Version]
- LeVine, D.M.; Schneider, A.; Lang, R.H.; Carter, H.G. Scattering from thin dielectric disks. IEEE Trans. Antennas Propag. 1985, 33, 1410–1413. [Google Scholar] [CrossRef][Green Version]
- Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T. Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets. IEEE Antennas Propag. Mag. 1993, 35, 14–24. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 2008, 56, 747–757. [Google Scholar] [CrossRef]
- Nosich, A.I. Method of analytical regularization in computational photonics. Radio Sci. 2016, 51, 1421–1430. [Google Scholar] [CrossRef]
- Jones, D.S. The Theory of Electromagnetism; Pergamon Press: New York, NY, USA, 1964. [Google Scholar]
- Dudley, D.G. Error minimization and convergence in numerical methods. Electromagnetics 1985, 5, 89–97. [Google Scholar] [CrossRef]
- Lucido, M.; Kobayashi, K.; Medina, F.; Nosich, A.I.; Vinogradova, E. Guest editorial: Method of analytical regularisation for new frontiers of applied electromagnetics. IET Microw. Antennas Propag. 2021, 15, 1127–1132. [Google Scholar] [CrossRef]
- Lovat, G.; Burghignoli, P.; Araneo, R.; Celozzi, S. Magnetic field penetration through a circular aperture in a perfectly conducting plate excited by a coaxial loop. IET Microw. Antennas Propag. 2021, 15, 1147–1158. [Google Scholar] [CrossRef]
- Kuryliak, D.B. The rigorous solution of the scattering problem for a finite cone embedded in a dielectric sphere surrounded by the dielectric medium. IET Microw. Antennas Propag. 2021, 15, 1181–1193. [Google Scholar] [CrossRef]
- Yevtushenko, F.O.; Dukhopelnykov, S.V.; Zinenko, T.L.; Rapoport, Y.G. Electromagnetic characterization of tuneable graphene-strips-on-substrate metasurface over entire THz range: Analytical regularization and natural-mode resonance interplay. IET Microw. Antennas Propag. 2021, 15, 1225–1239. [Google Scholar] [CrossRef]
- Oğuzer, T.; Altıntaş, A. Evaluation of the E-polarization focusing ability in Thz range for microsize cylindrical parabolic reflector made of thin dielectric layer sandwiched between graphene. IET Microw. Antennas Propag. 2021, 15, 1240–1248. [Google Scholar] [CrossRef]
- Tikhenko, M.E.; Radchenko, V.V.; Dukhopelnykov, S.V.; Nosich, A.I. Radiation characteristics of a double-layer spherical dielectric lens antenna with a conformal PEC disk fed by on-axis dipoles. IET Microw. Antennas Propag. 2021, 15, 1249–1269. [Google Scholar] [CrossRef]
- Vinogradova, E.D.; Smith, P.D. Scattering of an obliquely incident E−polarised plane wave from ensembles of slotted cylindrical cavities: A rigorous approach. IET Microw. Antennas Propag. 2021, 15, 1270–1282. [Google Scholar] [CrossRef]
- Vinogradova, E.D.; Kobayashi, K. Complex eigenvalues of natural TM-oscillations in an open resonator formed by two sinusoidally corrugated metallic strips. IET Microw. Antennas Propag. 2021, 15, 1283–1298. [Google Scholar] [CrossRef]
- Koshovy, G.I. The Cauchy method of analytical regularisation in the modelling of plane wave scattering by a flat pre-fractal system of impedance strips. IET Microw. Antennas Propag. 2021, 15, 1310–1317. [Google Scholar] [CrossRef]
- Doroshenko, V.O.; Stognii, N.P. Integral transforms and the regularisation method in the time-domain excitation of open PEC slotted cone scatterers. IET Microw. Antennas Propag. 2021, 15, 1360–1379. [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis, 2nd ed.; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Steinberg, S. Meromorphic families of compact operators. Arch. Rational Mech. Anal. 1968, 31, 372–379. [Google Scholar] [CrossRef]
- Lucido, M. Scattering by a tilted strip buried in a lossy half-space at oblique incidence. Prog. Electromagn. Res. M 2014, 37, 51–62. [Google Scholar] [CrossRef][Green Version]
- Corsetti, F.; Lucido, M.; Panariello, G. Effective analysis of the propagation in coupled rectangular-core waveguides. IEEE Photon. Technol. Lett. 2014, 26, 1855–1858. [Google Scholar] [CrossRef]
- Lucido, M.; Migliore, M.D.; Pinchera, D. A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder. Prog. Electromagn. Res. B 2016, 70, 55–71. [Google Scholar] [CrossRef]
- Lucido, M.; Di Murro, F.; Panariello, G.; Santomassimo, C. Fast converging CFIE-MoM analysis of electromagnetic scattering from PEC polygonal cross-section closed cylinders. Prog. Electromagn. Res. B 2017, 74, 109–121. [Google Scholar] [CrossRef][Green Version]
- Lucido, M.; Schettino, F.; Migliore, M.D.; Pinchera, D.; Di Murro, F.; Panariello, G. Electromagnetic scattering by a zero-thickness PEC annular ring: A new highly efficient MoM solution. J. Electromagn. Waves Appl. 2017, 31, 405–416. [Google Scholar] [CrossRef]
- Lucido, M.; Santomassimo, C.; Panariello, G. The method of analytical preconditioning in the analysis of the propagation in dielectric waveguides with wedges. J. Light. Technol. 2018, 36, 2925–2932. [Google Scholar] [CrossRef]
- Lucido, M.; Migliore, M.D.; Nosich, A.I.; Panariello, G.; Pinchera, D.; Schettino, F. Efficient evaluation of slowly converging integrals arising from MAP application to a spectral-domain integral equation. Electronics 2019, 8, 1500. [Google Scholar] [CrossRef]
- Lucido, M. Analysis of the propagation in high-speed interconnects for MIMICs by means of the method of analytical preconditioning: A new highly efficient evaluation of the coefficient matrix. Appl. Sci. 2021, 11, 933. [Google Scholar] [CrossRef]
- Fikioris, G. Regularised discretisations obtained from first-kind Fredholm operator equations. IET Microw. Antennas Propag. 2021, 15, 357–363. [Google Scholar] [CrossRef]
- Assante, D.; Panariello, G.; Schettino, F.; Verolino, L. Longitudinal coupling impedance of a particle traveling in PEC rings: A regularised analysis. IET Microw. Antennas Propag. 2021, 15, 1318–1329. [Google Scholar] [CrossRef]
- Assante, D.; Panariello, G.; Schettino, F.; Verolino, L. Coupling impedance of a PEC angular strip in a vacuum pipe. IET Microw. Antennas Propag. 2021, 15, 1347–1359. [Google Scholar] [CrossRef]
- Tsalamengas, J.L. Exponentially converging Nyström’s methods for systems of SIEs with applications to open/closed strip or slot-loaded2-D structures. IEEE Trans. Antennas Propag. 2006, 54, 1549–1558. [Google Scholar] [CrossRef]
- Nosich, A.A.; Gandel, Y.V. Numerical analysis of quasi-optical multireflector antennas in 2-D with the method of discrete singulari-ties. IEEE Trans. Antennas Propag. 2007, 55, 399–406. [Google Scholar] [CrossRef]
- Shapoval, O.V.; Sauleau, R.; Nosich, A.I. Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nyström-type algorithm. IEEE Trans. Antennas Propag. 2011, 59, 3339–3346. [Google Scholar] [CrossRef]
- Kaliberda, M.E.; Lytvynenko, L.M.; Pogarsky, S.A.; Sauleau, R. Excitation of guided waves of grounded dielectric slab by a THz plane wave scattered from finite number of embedded graphene strips: Singular integral equation analysis. IET Microw. Antennas Propag. 2021, 15, 1171–1180. [Google Scholar] [CrossRef]
- Tsalamengas, J.L.; Vardiambasis, I.O. A parallel-plate waveguide antenna radiating through a perfectly conducting wedge. IET Microw. Antennas Propag. 2021, 15, 571–583. [Google Scholar] [CrossRef]
- Lucido, M.; Panariello, G.; Schettino, F. Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method. Radio Sci. 2017, 52, 2–14. [Google Scholar] [CrossRef]
- Lucido, M.; Schettino, F.; Panariello, G. Scattering from a thin resistive disk: A guaranteed fast convergence technique. IEEE Trans. Antennas Propag. 2021, 69, 387–396. [Google Scholar] [CrossRef]
- Lucido, M.; Balaban, M.V.; Dukhopelnykov, S.V.; Nosich, A.I. A fast-converging scheme for the electromagnetic scattering from a thin dielectric disk. Electronics 2020, 9, 1451. [Google Scholar] [CrossRef]
- Lucido, M. Electromagnetic Scattering from a Graphene Disk: Helmholtz-Galerkin Technique and Surface Plasmon Resonances. Mathematics 2021, 9, 1429. [Google Scholar] [CrossRef]
- Lucido, M.; Balaban, M.V.; Nosich, A.I. Plane wave scattering from thin dielectric disk in free space: Generalized boundary conditions, regularizing Galerkin technique and whispering gallery mode resonances. IET Microw. Antennas Propag. 2021, 15, 1159–1170. [Google Scholar] [CrossRef]
- Chew, W.C.; Kong, J.A. Resonance of nonaxial symmetric modes in circular microstrip disk antenna. J. Math. Phys. 1980, 21, 2590–2598. [Google Scholar] [CrossRef]
- Van Bladel, J. A discussion of Helmholtz’ theorem on a surface. AEÜ 1993, 47, 131–136. [Google Scholar]
- Lucido, M.; Di Murro, F.; Panariello, G. Electromagnetic scattering from a zero-thickness PEC disk: A note on the Helmholtz-Galerkin analytically regularizing procedure. Progr. Electromagn. Res. Lett. 2017, 71, 7–13. [Google Scholar] [CrossRef]
- Braver, I.; Fridberg, P.; Garb, K.; Yakover, I. The behavior of the electromagnetic field near the edge of a resistive half-plane. IEEE Trans. Antennas Propag. 1988, 36, 1760–1768. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Verlag Harri Deutsch: Frankfurt, Germany, 1984. [Google Scholar]
- Gradstein, S.; Ryzhik, I.M. Tables of Integrals, Series and Products; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Wilkins, J.E. Neumann series of Bessel functions. Trans. Am. Math. Soc. 1948, 64, 359–385. [Google Scholar] [CrossRef]
- Geng, N.; Carin, L. Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium. IEEE Trans. Antennas Propag. 1999, 47, 610–619. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. Introduction to the Theory of Fourier Integrals; Oxford University Press: London, UK, 1948. [Google Scholar]
- Van Bladel, J. Electromagnetic Fields; IEEE Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucido, M. Analysis of the Scattering from a Two Stacked Thin Resistive Disks Resonator by Means of the Helmholtz–Galerkin Regularizing Technique. Appl. Sci. 2021, 11, 8173. https://doi.org/10.3390/app11178173
Lucido M. Analysis of the Scattering from a Two Stacked Thin Resistive Disks Resonator by Means of the Helmholtz–Galerkin Regularizing Technique. Applied Sciences. 2021; 11(17):8173. https://doi.org/10.3390/app11178173
Chicago/Turabian StyleLucido, Mario. 2021. "Analysis of the Scattering from a Two Stacked Thin Resistive Disks Resonator by Means of the Helmholtz–Galerkin Regularizing Technique" Applied Sciences 11, no. 17: 8173. https://doi.org/10.3390/app11178173
APA StyleLucido, M. (2021). Analysis of the Scattering from a Two Stacked Thin Resistive Disks Resonator by Means of the Helmholtz–Galerkin Regularizing Technique. Applied Sciences, 11(17), 8173. https://doi.org/10.3390/app11178173