Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. ZLF Aqueous Extract Preparation
2.3. Determination of Total Flavonoid and Phenolic Contents
2.4. Determination of the Antioxidant Activity
2.4.1. DPPH Free Radical-Scavenging Activity Assay
2.4.2. β-Carotene Bleaching Assay
2.5. Anti-Hyperlipidemic Activity
2.5.1. Animals and Housing
2.5.2. Preparation of High-Fat Diet
2.5.3. Experimental Protocol Design
- A standard control group (NCG) received only distilled water at 10 mL/kg body weight.
- The Hyperlipidemic Control Group (HCG) freely received the high-fat diet and received distilled water daily (10 mL/kg).
- Two treated groups received 200 or 400 mg/kg of ZLF aqueous extract and then a high-fat diet for 30 days of the treatment.
2.5.4. Biochemical Analysis
2.5.5. The Atherogenic Index Calculation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoids Contents
3.2. Antioxidant Activity of ZLF Aqueous Extract
3.2.1. DPPH Free Radical Scavenging Activity
3.2.2. β-Carotene Bleaching Test
3.3. Effect of the ZLF Aqueous Extract on High-Fat Diet-Induced Lipid Metabolism Disturbance in Mice
3.3.1. Bodyweight and Relative Weight of Organs
3.3.2. The Effect of ZLF on Triglycerides, Total Cholesterol, and HDL-Cholesterol
3.3.3. The Effect of ZLF on HDL Cholesterol/Total Cholesterol, and Atherogenic Index
3.3.4. The Effect of ZLF on Plasma Blood Sugar Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Maaiden, E.; El Kharrassi, Y.; Qarah, N.A.S.; Essamadi, A.K.; Moustaid, K.; Nasser, B. Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. J. Ethnopharmacol. 2020, 259, 112950. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.E.; Chatrou, L.W.; Mols, J.B.; Erkens, R.H.J.; Pirie, M.D. Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1495–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeli, M.; Samavati, V. Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromol. 2014, 72, 580–587. [Google Scholar] [CrossRef]
- Khouchlaa, A.; Talbaoui, A.; El Yahyaoui El Idrissi, A.; Bouyahya, A.; Ait Lahsen, S.; Kahouadji, A.; Tijane, M. Détermination des composés phénoliques et évaluation de l’activité litholytique in vitro sur la lithiase urinaire d’extrait de Zizyphus lotus L. d’origine marocaine. Phytotherapie 2018, 16, 14–19. [Google Scholar] [CrossRef]
- Abdeddaim, M.; Lombarkia, O.; Bacha, A.; Fahloul, D.; Abdeddaim, D.; Farhat, R.; Saadoudi, M.; Noui, Y.; Lekbir, A. Biochemical characterization and nutritional properties of Zizyphus lotus L. fruits in Aures region, northeastern of Algeria. Ann. Food Sci. Techgnol. 2014, 15, 75–81. [Google Scholar]
- Fakchich, J.; Elachouri, M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). J. Ethnopharmacol. 2020, 267, 113–200. [Google Scholar]
- Marmouzi, I.; Kharbach, M.; El Jemli, M.; Bouyahya, A.; Cherrah, Y.; Bouklouze, A.; Vander Heyden, Y.; Faouzi, M.E.A. Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Ind. Crops Prod. 2019, 132, 134–139. [Google Scholar] [CrossRef]
- Bencheikh, N.; Bouhrim, M.; Kharchoufa, L.; Choukri, M.; Bnouham, M.; Elachouri, M. Protective Effect of Zizyphus lotus L. (Desf.) Fruit against CCl4-Induced Acute Liver Injury in Rat. Evid. Based Complement. Altern. Med. 2019, 2019, 6161593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgi, W.; Chouchane, N. Anti-spasmodic effects of Zizyphus lotus (L.) Desf. extracts on isolated rat duodenum. J. Ethnopharmacol. 2009, 126, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Borgi, W.; Ghedira, K.; Chouchane, N. Antiinflammatory and analgesic activities of Zizyphus lotus root barks. Fitoterapia 2007, 78, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Wahida, B.; Abderrahman, B.; Nabil, C. Antiulcerogenic activity of Zizyphus lotus (L.) extracts. J. Ethnopharmacol. 2007, 112, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Bakhtaoui, F.Z.; Lakmichi, H.; Megraud, F.; Chait, A.; Gadhi, C.E.A. Gastro-protective, anti-Helicobacter pylori and, antioxidant properties of Moroccan Zizyphus lotus L. J. Appl. Pharm. Sci. 2014, 4, 81–87. [Google Scholar] [CrossRef]
- Kharchoufa, L.; Merrouni, I.A.; Yamani, A.; Elachouri, M. Profile on medicinal plants used by the people of North Eastern Morocco: Toxicity concerns. Toxicon 2018, 154, 90–113. [Google Scholar] [CrossRef]
- El Cadi, H.; Bouzidi, H.E.L.; Selama, G.; El Cadi, A.; Ramdan, B.; Oulad, Y.; Majdoub, E.; Alibrando, F.; Dugo, P.; Mondello, L.; et al. Physico-Chemical and Phytochemical Characterization of Moroccan Wild Jujube “Zizyphus lotus (L.)” Fruit Crude Extract and Fractions. Molecules 2020, 25, 5237. [Google Scholar] [CrossRef]
- Touiss, I.; Harnafi, M.; Khatib, S.; Bekkouch, O.; Ouguerram, K.; Amrani, S.; Harnafi, H. Rosmarinic acid-rich extract from Ocimum basilicum L. decreases hyperlipidemia in high fat diet-induced hyperlipidemic mice and prevents plasma lipid oxidation. Physiol. Pharmacol. 2019, 23, 197–207. [Google Scholar]
- Bouhrim, M.; Daoudi, N.E.; Ouassou, H.; Benoutman, A.; Loukili, E.H.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Aziz, M.; Bnouham, M. Phenolic Content and Antioxidant, Antihyperlipidemic, and Antidiabetogenic Effects of Opuntia dillenii Seed Oil. Sci. World J. 2020, 2020, 5717052. [Google Scholar] [CrossRef]
- Kim, E.A.; Yang, J.; Byeon, E.; Kim, W.; Kang, D.; Han, J.; Hong, S.; Kim, D.; Park, S.; Huh, J.; et al. Anti-Obesity Effect of Pine Needle Extract on High-Fat Diet-Induced Obese Mice. Plants 2021, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Sadeq, O.; Mechchate, H.; Es-Safi, I.; Bouhrim, M.; Jawhari, F.Z.; Ouassou, H.; Kharchoufa, L.; Alzain, M.N.; Alzamel, N.M.; Mohamed Al Kamaly, O.; et al. Phytochemical screening, antioxidant and antibacterial activities of pollen extracts from micromeria fruticosa, achillea fragrantissima, and phoenix dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Khoulati, A.; Ouahhoud, S.; Mamri, S.; Alaoui, K.; Lahmass, I.; Choukri, M.; Kharmach, E.-Z.; Asehraou, A.; Saalaoui, E. Saffron extract stimulates growth, improves the antioxidant components of Solanum lycopersicum L., and has an antifungal effect. Ann. Agric. Sci. 2019, 64, 138–150. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Ciocalteau, V. Tyrosine and Tryptophane in Proteins. J. Biol. Chem. 1927, 73, 627–648. [Google Scholar] [CrossRef]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Ho, C.T. Antioxidant activities of buckwheat extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Harnafi, H.; Aziz, M.; Amrani, S. Sweet basil (Ocimum basilicum L.) improves lipid metabolism in hypercholesterolemic rats. e-SPEN 2009, 4, e181–e186. [Google Scholar] [CrossRef] [Green Version]
- Ramchoun, M.; Harnafi, H.; Alem, C.; Büchele, B.; Simmet, T.; Rouis, M.; Atmani, F.; Amrani, S. Hypolipidemic and antioxidant effect of polyphenol-rich extracts from Moroccan thyme varieties. ESPEN J. 2012, 7, e119–e124. [Google Scholar] [CrossRef]
- Alfaro, S.; Mutis, A.; Palma, R.; Quiroz, A.; Seguel, I.; Scheuermann, E. Influence of genotype and harvest year on polyphenol content and antioxidant activity in murtilla (Ugni molinae Turcz) fruit. J. Soil Sci. Plant Nutr. 2013, 13, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Connor, A.M.; Luby, J.J.; Tong, C.B.S.; Finn, C.E.; Hancock, J.F. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Hano, C.; Tungmunnithum, D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines 2020, 7, 26. [Google Scholar] [CrossRef]
- Prasad, K. Flax lignan complex slows down the progression of atherosclerosis in hyperlipidemic rabbits. J. Cardiovasc. Pharmacol. Ther. 2009, 14, 38–48. [Google Scholar] [CrossRef]
- Lee, P.; Prasad, K. Suppression of oxidative stress as a mechanism of reduction of hypercholesterolemic atherosclerosis by cyclooxygenase inhibitors. Int. J. Angiol. 2003, 12, 13–23. [Google Scholar] [CrossRef]
- Dahlia, F.; Barouagui, S.; Hemida, H.; Bousaadia, D.; Rahmoune, B. Influence of environment variations on anti-glycaemic, anti-cholesterolemic, antioxidant and antimicrobial activities of natural wild fruits of Ziziphus lotus (L.). S. Afr. J. Bot. 2020, 132, 215–225. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Bouhlali, E.d.T.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Harnafi, H.; Filali-Zegzouti, Y.; Alem, C. Effect of Phoenix dactylifera seeds (dates) extract in triton WR-1339 and high fat diet induced hyperlipidaemia in rats: A comparison with simvastatin. J. Ethnopharmacol. 2020, 259, 112961. [Google Scholar] [CrossRef]
- Bekkouch, O.; Harnafi, M.; Touiss, I.; Khatib, S.; Harnafi, H.; Alem, C.; Amrani, S. In Vitro Antioxidant and in Vivo Lipid-Lowering Properties of Zingiber officinale Crude Aqueous Extract and Methanolic Fraction: A Follow-Up Study. Evid. Based Complement. Altern. Med. 2019, 2019, 9734390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnafi, M.; Bekkouch, O.; Touiss, I.; Khatib, S.; Mokhtari, I.; Milenkovic, D.; Harnafi, H.; Amrani, S. Phenolic-rich extract from almond (prunus dulcis) hulls improves lipid metabolism in triton wr-1339 and high-fat diet-induced hyperlipidemic mice and prevents lipoprotein oxidation: A comparison with fenofibrate and butylated hydroxyanisole. Prev. Nutr. Food Sci. 2020, 25, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, Y.; Shipelin, V.; Mazo, V.; Zorin, S.; Petrov, N.; Kochetkova, A. Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition 2017, 41, 107–112. [Google Scholar] [CrossRef]
- Jawed, A.; Singh, G.; Kohli, S.; Sumera, A.; Haque, S.; Prasad, R.; Paul, D. Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. S. Afr. J. Bot. 2019, 120, 25–32. [Google Scholar] [CrossRef]
- Kamoun, J.; Rahier, R.; Sellami, M.; Koubaa, I.; Mansuelle, P.; Lebrun, R.; Berlioz-Barbier, A.; Fiore, M.; Alvarez, K.; Abousalham, A.; et al. Identification of a new natural gastric lipase inhibitor from star anise. Food Funct. 2019, 10, 469–478. [Google Scholar] [CrossRef]
- Olkkonen, V.M.; Sinisalo, J.; Jauhiainen, M. New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk? Atherosclerosis 2018, 272, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Shattat, G.; Al-Qirim, T.; Sweidan, K.; Shahwan, M.; El-Huneidi, W.; Al-Hiari, Y. The hypolipidemic activity of novel benzofuran-2-carboxamide derivatives in Triton WR-1339-induced hyperlipidemic rats: A comparison with bezafibrate. J. Enzyme Inhib. Med. Chem. 2010, 25, 751–755. [Google Scholar] [CrossRef]
- Koo, S.I.; Noh, S.K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnafi, H.; Amrani, S. Flavonoids as potent phytochemicals in cardiovascular diseases prevention. Sect. Title Pharmacol. 2007, 1, 193–202. [Google Scholar]
- Abbott, R.D.; Wilson, P.W.F.; Kannel, W.B.; Castelli, W.P. High density lipoprotein cholesterol, total cholesterol screening, and myocardial infarction. Arteriosclerosis 1988, 8, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Surya, S.; Arun Kumar, R.; Carla, B.; Sunil, C. Antihyperlipidemic effect of Ficus dalhousiae miq. stem bark on Triton WR-1339 and high fat diet-induced hyperlipidemic rats. Bull. Fac. Pharmacy Cairo Univ. 2017, 55, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Rony, K.A.; Ajith, T.A.; Nima, N.; Janardhanan, K.K. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats. Environ. Toxicol. Pharmacol. 2014, 37, 482–492. [Google Scholar] [CrossRef]
- Poovitha, S.; Siva Sai, M.; Parani, M. Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. J. Funct. Foods 2017, 33, 181–187. [Google Scholar] [CrossRef]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef]
- Abdel-Zaher, A.O.; Salim, S.Y.; Assaf, M.H.; Abdel-Hady, R.H. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. J. Ethnopharmacol. 2005, 101, 129–138. [Google Scholar] [CrossRef]
Groups | Weight Gain (g) | Relative Kidney to Body Weight (g/100 g of bw) | Relative Liver to Body Weight (g/100 g of bw) |
---|---|---|---|
NCG | 5.61 ± 0.73 | 0.67 ± 0.16 | 3.81 ± 0.92 |
HCG | 7.39 ± 0.21 | 0.79 ± 0.15 | 4.51 ± 0.83 |
ZLF (200 mg/Kg) | 6.11 ± 1.01 | 0.72 ± 0.11 | 4.13 ± 0.71 |
ZLF (400 mg/Kg) | 5.31 ± 0.92 | 0.69 ± 0.09 | 4.01 ± 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencheikh, N.; Bouhrim, M.; Merrouni, I.A.; Boutahiri, S.; Kharchoufa, L.; Addi, M.; Tungmunnithum, D.; Hano, C.; Eto, B.; Legssyer, A.; et al. Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits. Appl. Sci. 2021, 11, 7788. https://doi.org/10.3390/app11177788
Bencheikh N, Bouhrim M, Merrouni IA, Boutahiri S, Kharchoufa L, Addi M, Tungmunnithum D, Hano C, Eto B, Legssyer A, et al. Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits. Applied Sciences. 2021; 11(17):7788. https://doi.org/10.3390/app11177788
Chicago/Turabian StyleBencheikh, Noureddine, Mohamed Bouhrim, Ilyass Alami Merrouni, Salima Boutahiri, Loubna Kharchoufa, Mohamed Addi, Duangjai Tungmunnithum, Christophe Hano, Bruno Eto, Abdelkhaleq Legssyer, and et al. 2021. "Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits" Applied Sciences 11, no. 17: 7788. https://doi.org/10.3390/app11177788
APA StyleBencheikh, N., Bouhrim, M., Merrouni, I. A., Boutahiri, S., Kharchoufa, L., Addi, M., Tungmunnithum, D., Hano, C., Eto, B., Legssyer, A., & Elachouri, M. (2021). Antihyperlipidemic and Antioxidant Activities of Flavonoid-Rich Extract of Ziziphus lotus (L.) Lam. Fruits. Applied Sciences, 11(17), 7788. https://doi.org/10.3390/app11177788