CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal
Abstract
:1. Introduction
2. Material and Method
2.1. Case Description
2.2. CFD Setup
3. Results
3.1. Velocity Profiles
3.2. Turbulence Kinetic Energy Profiles
3.3. Airflow Streamlines
3.4. Velocity and Turbulence Results at Two Different Suction Levels (0.85 and 0.7 bar)
4. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Turbulence kinetic energy | |
Initial velocity magnitude | |
Initial turbulence intensity | |
Turbulence or eddy length scale | |
k–ε model parameter | |
Turbulence kinetic energy dissipation | |
Reynolds number |
References
- Goodman, R.A.; Kocher, P.L.; O’Brien, D.J.; Alexander, F.S. The Structure of Law in Public Health Systems and Practice. Law Public Health Pract. 2007, 45–68. [Google Scholar] [CrossRef]
- Ramos, T.; Dedesko, S.; Siegel, J.A.; Gilbert, J.A.; Stephens, B. Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building. PLoS ONE 2015, 10, e0118207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.J.; Anderson, D.; Rutala, W.A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 2013, 26, 338–344. [Google Scholar] [CrossRef]
- WHO. Implementing the WHO Stop TB Strategy: A Handbook for National Tuberculosis Control Programmes; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Beggs, C.B.; Kerr, K.G.; Noakes, C.J.; Hathway, E.A.; Sleigh, A. The ventilation of multiple-bed hospital wards: Review and analysis. Am. J. Infect. Control 2008, 36, 250–259. [Google Scholar] [CrossRef]
- Memarzadeh, F.; Xu, W. Role of air changes per hour (ACH) in possible transmission of airborne infections. Build. Simul. 2011, 5, 15–28. [Google Scholar] [CrossRef]
- WHO. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Paul Ninomura, P.E.; Richard Hermans, P.E. Ventilation standard for health care facilities. ASHRAE J. 2008, 50, 52–57. [Google Scholar]
- Sehulster, L.; Chinn, R.Y.W. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm. Rep. 2003, 52, 1–48. [Google Scholar] [PubMed]
- Li, Y.; Leung, G.; Tang, J.; Yang, X.; Chao, Y.H.C.; Lin, Z.; Lu, W.-Z.J.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment? A multidisciplinary systematic review. Indoor Air 2007, 17, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.T.; Kasali, A.; Steinberg, J.P.; Zimring, C.; Denham, M.E. The Role of the Hospital Environment in Preventing Healthcare-Associated Infections Caused by Pathogens Transmitted through the Air. HERD Health Environ. Res. Des. J. 2013, 7, 74–98. [Google Scholar] [CrossRef]
- Mousavi, E. Airborne Infection in Healthcare Environments: Implications to Hospital Corridor Design; The University of Nebraska-Lincoln: Lincoln, Nebraska, 2015. [Google Scholar]
- Kudo, D.; Sasaki, J.; Ikeda, H.; Shiino, Y.; Shime, N.; Mochizuki, T.; Morita, M.; Soeda, H.; Ohge, H.; Lee, J.J.; et al. A survey on infection control in emergency departments in Japan. Acute Med. Surg. 2018, 5, 374–379. [Google Scholar] [CrossRef]
- Drees, K.H.; Wenger, J.D.; Janu, G. Ventilation air flow measurement for ASHRAE Standard 62-1989. ASHRAE J. 1992, 34. Available online: https://www.osti.gov/biblio/7184828 (accessed on 12 April 2021).
- Cho, J. Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations. Appl. Therm. Eng. 2019, 148, 208–218. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Dey, K.; Paul, A.R.; Biswas, R. A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room. Chaos Solitons Fractals 2020, 139, 110294. [Google Scholar] [CrossRef] [PubMed]
- Aganovic, A. Airflow Distribution for Minimizing Human Exposure to Airborne Contaminants in Healthcare Facilities; NTNU: Trondheim, Norway, 2019. [Google Scholar]
- Memarzadeh, F. Literature Review of the Effect of Temperature and Humidity on Viruses. ASHRAE Trans. 2012, 118, 1049–1060. [Google Scholar]
- Memarzadeh, F. The Environment of Care and Health Care-Associated Infections: An Engineering Perspective; American Society of Healthcare Engineering of the American Hospital Association: Washington, DC, USA, 2011. [Google Scholar]
- Lange, S.J.; Ritchey, M.D.; Goodman, A.B.; Dias, T.; Twentyman, E.; Fuld, J.; Schieve, L.A.; Imperatore, G.; Benoit, S.R.; Kite-Powell, A. Potential Indirect Effects of the COVID-19 Pandemic on Use of Emergency Departments for Acute Life-Threatening Conditions—United States, January–May 2020; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Chua, W.L.T.; Quah, L.J.J.; Shen, Y.; Zakaria, D.; Wan, P.W.; Tan, K.; Wong, E. Emergency department ‘outbreak rostering’ to meet challenges of COVID-19. Emerg. Med. J. 2020, 37, 407–410. [Google Scholar] [CrossRef]
- Iversen, K.; Bundgaard, H.; Hasselbalch, R.B.; Kristensen, J.H.; Nielsen, P.B.; Pries-Heje, M.M.; Knudsen, A.D.; Christensen, C.E.; Fogh, K.; Norsk, J.B.; et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020, 20, 1401–1408. [Google Scholar] [CrossRef]
- Nadarajan, G.D.; Omar, E.; Abella, B.S.; Hoe, P.S.; Shin, S.D.; Ma, M.H.-M.; Ong, M.E.H. A conceptual framework for Emergency department design in a pandemic. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Woolard, R.H.; Borron, S.W.; Mackay, J.M. Emergency Department Design. Ciottone’s Dis. Med. 2016, 125–130. [Google Scholar] [CrossRef]
- Ansys. Ansys|Engineering Simulation Software. Available online: https://www.ansys.com (accessed on 22 April 2021).
- Stolarski, T.; Nakasone, Y.; Yoshimoto, S. Engineering Analysis with ANSYS Software; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- World Population Review. Average Height by Country 2021. Available online: https://worldpopulationreview.com/country-rankings/average-height-by-country (accessed on 20 April 2021).
- Yuan, F.-D.; You, S.-J. CFD simulation and optimization of the ventilation for subway side-platform. Tunn. Undergr. Space Technol. 2007, 22, 474–482. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B. CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Build. Environ. 2012, 53, 34–48. [Google Scholar] [CrossRef]
- Li, Y.; Nielsen, P.V. CFD and ventilation research. Indoor Air 2011, 21, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-J. Challenges of using CFD simulation for the design and online control of ventilation systems. Indoor Built Environ. 2019, 28, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Harsha, P.T. Use of turbulent kinetic energy in free mixing studies. AIAA J. 1970, 8, 1026–1032. [Google Scholar] [CrossRef]
- Dimotakis, P.E. Turbulent Mixing. Annu. Rev. Fluid Mech. 2005, 37, 329–356. [Google Scholar] [CrossRef]
- de Roode, S.R.; Jonker, H.J.; van de Wiel, B.J.; Vertregt, V.; Perrin, V. A diagnosis of excessive mixing in smagorinsky subfilter-scale turbulent kinetic energy models. J. Atmos. Sci. 2017, 74, 1495–1511. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Elements maximum size (mm) | 100 |
Number of elements | |
Growth rate | 1.2 |
Defeature size (mm) | 0.5 |
Curvature minimum size (mm) | 1 |
Curvature normal angle (degree) | 18 |
Skewness | 0.8 |
Inflation transition ratio | 0.75 |
Inflation number of layers | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeidat, B.; Alrebei, O.F.; Abdallah, I.A.; Darwish, E.F.; Amhamed, A. CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal. Appl. Sci. 2021, 11, 7450. https://doi.org/10.3390/app11167450
Obeidat B, Alrebei OF, Abdallah IA, Darwish EF, Amhamed A. CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal. Applied Sciences. 2021; 11(16):7450. https://doi.org/10.3390/app11167450
Chicago/Turabian StyleObeidat, Bushra, Odi Fawwaz Alrebei, Ibrahim Atef Abdallah, Eman F. Darwish, and Abdulkarem Amhamed. 2021. "CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal" Applied Sciences 11, no. 16: 7450. https://doi.org/10.3390/app11167450
APA StyleObeidat, B., Alrebei, O. F., Abdallah, I. A., Darwish, E. F., & Amhamed, A. (2021). CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal. Applied Sciences, 11(16), 7450. https://doi.org/10.3390/app11167450