Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review
Abstract
1. Introduction
2. Development of Molecular Tools for the Genetic Modification of B. bruxellensis
2.1. Drug Sensitivity
2.2. Construction of Molecular Cassettes for B. bruxellensis Manipulation
2.3. Transformation Protocols
3. CRISPR/Cas9 System in B. bruxellensis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, M.T. Dekkera van der Walt (1964). In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; Volume 1, pp. 373–378. [Google Scholar]
- Yamada, Y.; Matsuda, M.; Maeda, K.; Mikata, K. The Phylogenetic Relationships of Species of the Genus Dekkera VAN DER WALT Based on the Partial Sequences of 18S and 26S Ribosomal RNAs (Saccharomycetaceae). Biosci. Biotech. Biochem. 1994, 58, 1803–1808. [Google Scholar] [CrossRef][Green Version]
- Agnolucci, M.; Tirelli, A.; Cocolin, L.; Toffanin, A. Brettanomyces bruxellensis yeasts: Impact on wine and winemaking. World J. Microbiol. Biotechnol. 2017, 33, 180. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; Volume 1, pp. 87–110. [Google Scholar]
- Péter, G.; Dlauchy, D.; Tóbiás, A.; Fülöp, L.; Podgoršek, M.; Čadež, N. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil. Antonie van Leeuwenhoek 2017, 110, 657–664. [Google Scholar] [CrossRef]
- Turland, N.J.; Wiersema, J.H.; Barrie, F.R.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Kusber, W.H.; Li, D.Z.; Marhold, K.; et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress, Shenzhen, China, 23–29 July 2017; Regnum Vegetabile; Koeltz Botanical Books: Glashütten, Germany, 2018; Volume 159. [Google Scholar]
- Daniel, H.M.; Lachance, M.A.; Kurtzman, C.P. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 2014, 106, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Curtin, C.D.; Pretorius, I.S. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis. FEMS Yeast Res. 2014, 14, 997–1005. [Google Scholar]
- Colomer, M.S.; Funch, B.; Forster, J. The raise of Brettanomyces yeast species for beer production. Curr. Opin. Biotechnol. 2019, 56, 30–33. [Google Scholar] [CrossRef]
- Verachtert, H. Lambic and gueuze brewing: Mixed cultures in action. In Proceeding of the COMETT Course on Microbial Contaminants, Helsinki, Finland, 9–10 June 1992. [Google Scholar]
- Gamero, A.; Ferreira, V.; Pretorius, I.S.; Querol, A. Wine, Beer and Cider: Unravelling the Aroma Profile. In Molecular Mechanisms in Yeast Carbon Metabolism; Piškur, J., Compagno, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 261–297. [Google Scholar]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef] [PubMed]
- Cortés–Diéguez, S.; Rodriguez–Solana, R.; Domínguez, J.M.; Díaz, E. Impact odorants and sensory profile of young red wines from four Galician (NW of Spain) traditional cultivars. J. Inst. Brew. 2015, 121, 628–635. [Google Scholar] [CrossRef]
- Crauwels, S.; Steensels, J.; Aerts, G.; Willems, K.; Verstrepen, K.; Lievens, B. Brettanomyces bruxellensis, essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry. Brew. Sci. 2015, 68, 110–121. [Google Scholar]
- Lentz, M.; Harris, C. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast. Foods 2015, 4, 581–593. [Google Scholar] [CrossRef]
- Castro Parente, D.; Vidal, E.E.; Leite, F.C.B.; de Barros Pita, W.; de Morais, M.A. Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça. Yeast 2015, 32, 77–87. [Google Scholar] [PubMed]
- Vigentini, I.; Romano, A.; Compagno, C.; Merico, A.; Molinari, F.; Tirelli, A.; Foschino, R.; Volonterio, G. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine–model conditions. FEMS Yeast Res. 2008, 8, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N. The Influence of Brettanomyces/Dekkera sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am. J. Enol. Vitic. 1995, 46, 463–468. [Google Scholar]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Zuehlke, J.M.; Petrova, B.; Edwards, C.G. Advances in the Control of Wine Spoilage by Zygosaccharomyces and Dekkera/Brettanomyces. Annu. Rev. Food Sci. Technol. 2013, 4, 57–78. [Google Scholar] [CrossRef]
- Hellborg, L.; Piskur, J. Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis. Eukaryot. Cell 2009, 8, 1739–1749. [Google Scholar] [CrossRef]
- Vigentini, I.; De Lorenzis, G.; Picozzi, C.; Imazio, S.; Merico, A.; Galafassi, S.; Piškur, J.; Foschino, R. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int. J. Food Microbiol. 2012, 157, 6–15. [Google Scholar] [CrossRef]
- Avramova, M.; Cibrario, A.; Peltier, E.; Coton, M.; Coton, E.; Schacherer, J.; Spano, G.; Capozzi, V.; Blaiotta, G.; Salin, F.; et al. Brettanomyces bruxellensis population survey reveals a diploid–triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 2018, 8, 4136. [Google Scholar] [CrossRef]
- Selmecki, A.M.; Maruvka, Y.E.; Richmond, P.A.; Guillet, M.; Shoresh, N.; Sorenson, A.L.; De, S.; Kishony, R.; Michor, F.; Dowell, R.; et al. Polyploidy can drive rapid adaptation in yeast. Nature 2015, 519, 349–352. [Google Scholar] [CrossRef]
- Smith, B.D.; Divol, B. Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Food Microbiol. 2016, 59, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wang, M.; Zhan, R.; Yu, Y.; He, Y.; Lu, H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 2019, 12, 63. [Google Scholar] [CrossRef]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces yeasts—From spoilage organisms to valuable contributors to industrial fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, J.; Passoth, V. Dekkera bruxellensis—Spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness. FEMS Yeast Res. 2015, 15, fov021. [Google Scholar] [CrossRef]
- de Barros Pita, W.; Teles, G.H.; Peña–Moreno, I.C.; da Silva, J.M.; Ribeiro, K.C.; de Morais, M.A., Jr. The biotechnological potential of the yeast Dekkera bruxellensis. World J. Microbiol. Biotechnol. 2019, 35, 103. [Google Scholar] [CrossRef] [PubMed]
- Teles, G.H.; da Silva, J.M.; Mendonça, A.A.; de Morais Junior, M.A.; de Barros Pita, W. First aspects on acetate metabolism in the yeast Dekkera bruxellensis: A few keys for improving ethanol fermentation. Yeast 2018, 35, 577–584. [Google Scholar] [CrossRef]
- Park, S.W.; Hong, Y.K.; Kim, S.W.; Hong, S.I. Ethanol production by an immobilized thermotolerant mutant of Brettanomyces custersii H1–39 from wood hydrolyzate media. Korean J. Microbiol. Biotechnol. 2000, 28, 172–179. [Google Scholar]
- Galafassi, S.; Merico, A.; Pizza, F.; Hellborg, L.; Molinari, F.; Piškur, J.; Compagno, C. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen–limited and low–pH conditions. J. Ind. Microbiol. Biotechnol. 2011, 38, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Basílio, A.C.M.; de Araújo, P.R.L.; de Morais, J.O.F.; Silva–filho, E.A.; Morais, M.A.; Simoes, D.A. Detection and Identification of Wild Yeast Contaminants of the Industrial Fuel Ethanol Fermentation Process. Curr. Microbiol. 2008, 56, 322–326. [Google Scholar] [CrossRef]
- Blomqvist, J.; Eberhard, T.; Schnürer, J.; Passoth, V. Fermentation characteristics of Dekkera bruxellensis strains. Appl. Microbiol. Biotechnol. 2010, 87, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.F.; Bassi, A.P.; Avansini, S.H.; Neto, A.G.; Brasileiro, B.T.; Ceccato–Antonini, S.R.; de Morais, M.A., Jr. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2012, 101, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Piškur, J.; Ling, Z.; Marcet–Houben, M.; Ishchuk, O.P.; Aerts, A.; LaButti, K.; Copeland, A.; Lindquist, E.; Barry, K.; Compagno, C.; et al. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food–related properties. Int. J. Food Microbiol. 2012, 157, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Curtin, C.D.; Borneman, A.R.; Chambers, P.J.; Pretorius, I.S. De–Novo Assembly and Analysis of the Heterozygous Triploid Genome of the Wine Spoilage Yeast Dekkera bruxellensis AWRI1499. PLoS ONE 2012, 7, e33840. [Google Scholar] [CrossRef] [PubMed]
- Woolfit, M.; Rozpędowska, E.; Piškur, J.; Wolfe, K.H. Genome Survey Sequencing of the Wine Spoilage Yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot. Cell 2007, 6, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Peynaud, E.; Domercq, S. Sur les Brettanomyces isolés de raisins et de vins. Arch. Microbiol. 1956, 24, 266–280. [Google Scholar]
- Fournier, T.; Gounot, J.S.; Freel, K.; Cruaud, C.; Lemainque, A.; Aury, J.M.; Wincker, P.; Schacherer, J.; Friedrich, A. High–Quality de Novo Genome Assembly of the Dekkera bruxellensis Yeast Using Nanopore MinION Sequencing. G3 2017, 7, 3243–3250. [Google Scholar] [CrossRef]
- Godoy, L.; Silva–Moreno, E.; Mardones, W.; Guzman, D.; Cubillos, F.A.; Ganga, A. Genomics Perspectives on Metabolism, Survival Strategies, and Biotechnological Applications of Brettanomyces bruxellensis LAMAP2480. J. Mol. Microbiol. Biotechnol. 2017, 27, 147–158. [Google Scholar] [CrossRef]
- Roach, M.J.; Borneman, A.R. New genome assemblies reveal patterns of domestication and adaptation across Brettanomyces (Dekkera) species. BMC Genom. 2020, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Tiukova, I.A.; Pettersson, M.E.; Hoeppner, M.P.; Olsen, R.A.; Käller, M.; Nielsen, J.; Dainat, J.; Lantz, H.; Söderberg, J.; Passoth, V. Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS ONE 2019, 14, e0215077. [Google Scholar] [CrossRef]
- Schiønning, H. On Torula in English Beer Manufacture*. J. Inst. Brew. 1909, 15, 2–35. [Google Scholar] [CrossRef]
- Colomer, M.S.; Chailyan, A.; Fennessy, R.T.; Olsson, K.F.; Johnsen, L.; Solodovnikova, N.; Forster, J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front. Microbiol. 2020, 11, 637. [Google Scholar] [CrossRef]
- Di Canito, A.; Foschino, R.C.; Vigentini, I. Brettanomyces. In UNIMI Dataverse, version 1; Universita degli Studi di Milano: Milan, Italy, 2020. [Google Scholar] [CrossRef]
- Vigentini, I.; Gebbia, M.; Belotti, A.; Foschino, R.; Roth, F.P. CRISPR/Cas9 System as a Valuable Genome Editing Tool for Wine Yeasts with Application to Decrease Urea Production. Front. Microbiol. 2017, 8, 2194. [Google Scholar] [CrossRef] [PubMed]
- Avramova, M.; Grbin, P.; Borneman, A.; Albertin, W.; Masneuf–Pomarède, I.; Varela, C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res. 2019, 19, foz010. [Google Scholar] [CrossRef] [PubMed]
- Miklenić, M.; Štafa, A.; Bajić, A.; Žunar, B.; Lisnić, B.; Svetec, I.K. Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non–homologous DNA. J. Microbiol. Biotechnol. 2013, 23, 674–680. [Google Scholar] [CrossRef]
- Schiestl, R.H.; Petes, T.D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1991, 88, 7585–7589. [Google Scholar] [CrossRef] [PubMed]
- Ishchuk, O.P.; Vojvoda Zeljko, T.; Schifferdecker, A.J.; Mebrahtu Wisén, S.; Hagström, Å.K.; Rozpędowska, E.; Andersen, M.R.; Hellborg, L.; Ling, Z.; Sibirny, A.A.; et al. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2. PLoS ONE 2016, 11, e0161741. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, T.T.; Choi, Y.J.; Lee, B.H. Transformation Systems of non–Saccharomyces Yeasts. Crit. Rev. Biotechnol. 2001, 21, 177–218. [Google Scholar] [CrossRef]
- Avramova, M. Génétique de Populations et Diversité de l’Espèce Brettanomyces bruxellensis. Etude de la Tolérance aux Sulfites. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 19 December 2017. [Google Scholar]
- Varela, C.; Lleixà, J.; Curtin, C.; Borneman, A. Development of a genetic transformation toolkit for Brettanomyces bruxellensis. FEMS Yeast Res. 2018, 18, foy070. [Google Scholar] [CrossRef] [PubMed]
- Raschmanová, H.; Weninger, A.; Glieder, A.; Kovar, K.; Vogl, T. Implementing CRISPR–Cas technologies in conventional and non–conventional yeasts: Current state and future prospects. Biotechnol. Adv. 2018, 36, 641–665. [Google Scholar] [CrossRef]
- Miklenić, M.; Žunar, B.; Štafa, A.; Svetec, I.K. Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis. FEMS Yeast Res. 2015, 15, fov096. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhao, X.; Pan, S. Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β–glucosidase. Biotechnol. Biotechnol. Equip. 2014, 28, 878–881. [Google Scholar] [CrossRef]
- Serpaggi, V.; Remize, F.; Recorbet, G.; Gaudot–Dumas, E.; Sequeira–Le Grand, A.; Alexandre, H. Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol. 2012, 30, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.A.; Walter, J.M.; Schubert, M.G.; Kung, S.H.; Hawkins, K.; Platt, D.M.; Hernday, A.D.; Mahatdejkul–Meadows, T.; Szeto, W.; Chandran, S.S.; et al. Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR–Cas. Cell Syst. 2015, 1, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Jakočiūnas, T.; Bonde, I.; Herrgård, M.; Harrison, S.J.; Kristensen, M.; Pedersen, L.E.; Jensen, M.K.; Keasling, J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28, 213–222. [Google Scholar] [CrossRef]
- Mans, R.; van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.A.; van den Broek, M.; Daran–Lapujade, P.; Pronk, J.T.; van Maris, A.J.A.; Daran, J.M.G. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov004. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, D.; Zhu, X.; Pan, J.; Zhang, P.; Huo, L.; Zhu, X. A ‘suicide’ CRISPR–Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016, 6, 31145. [Google Scholar] [CrossRef]
- Lian, J.; Bao, Z.; Hu, S.; Zhao, H. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnol. Bioeng. 2018, 115, 1630–1635. [Google Scholar] [CrossRef]
- Cai, P.; Gao, J.; Zhou, Y. CRISPR–mediated genome editing in non–conventional yeasts for biotechnological applications. Microb. Cell Fact. 2019, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.S.; Chavez, A.; Collins, J.J. CRISPR–based genomic tools for the manipulation of genetically intractable microorganisms. Nat. Rev. Microbiol. 2018, 16, 333–339. [Google Scholar] [CrossRef]
- Varela, C.; Bartel, C.; Onetto, C.; Borneman, A. Targeted gene deletion in Brettanomyces bruxellensis with an expression–free CRISPR–Cas9 system. Appl. Microbiol. Biotechnol. 2020, 104, 7105–7115. [Google Scholar] [CrossRef]
- Weninger, A.; Fischer, J.E.; Raschmanová, H.; Kniely, C.; Vogl, T.; Glieder, A. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J. Cell. Biochem. 2018, 119, 3183–3198. [Google Scholar] [CrossRef]
- Varela, C.; Bartel, C.; Roach, M.; Borneman, A.; Curtin, C. Brettanomyces bruxellensis SSU1 Haplotypes Confer Different Levels of Sulfite Tolerance When Expressed in a Saccharomyces cerevisiae SSU1 Null Mutant. Appl. Environ. Microbiol. 2019, 85, e02429-18. [Google Scholar] [CrossRef]
- Valdetara, F.; Škalič, M.; Fracassetti, D.; Louw, M.; Compagno, C.; du Toit, M.; Foschino, R.; Petrovič, U.; Divol, B.; Vigentini, I. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition. Food Microbiol. 2020, 90, 103483. [Google Scholar] [CrossRef] [PubMed]
- Vigentini, I.; Lucy Joseph, C.; Picozzi, C.; Foschino, R.; Bisson, L.F. Assessment of the Brettanomyces bruxellensis metabolome during sulphur dioxide exposure. FEMS Yeast Res. 2013, 13, 597–608. [Google Scholar] [CrossRef]
- Grahl, N.; Demers, E.G.; Crocker, A.W.; Hogan, D.A. Use of RNA–protein complexes for genome editing in non–albicans Candida species. mSphere 2017, 2, e00218–17. [Google Scholar] [CrossRef] [PubMed]
- Stovicek, V.; Holkenbrink, C.; Borodina, I. CRISPR/Cas system for yeast genome engineering: Advances and applications. FEMS Yeast Res. 2017, 17, fox030. [Google Scholar] [CrossRef] [PubMed]
Features | References | |
---|---|---|
Growth rate (μ, h−1) | 0.037–0.114 | [29] |
Ethanol yield (g/g glucose) | 0.44–0.46 | [29] |
Glycerol yield (g/g glucose) | 0.0–0.026 | [28] |
Crabtree positive | yes | [9,20,28] |
Custers effect | yes | [9,22,28,29] |
Presence of respiratory complex 1 | yes | [9,20,28] |
Nitrate assimilation | strain specific | [9,22,28] |
Ethanol tolerance | 14% | [28] |
Whole–genome sequencing | yes | [8,36,37] |
AOX1 | yes | [9,20,28] |
Phenol metabolism | strain specific | [9,28] |
Enzymatic activities (VPR; CD; β–glucosidase) | strain specific | [19,28] |
SO2 tolerance | strain specific | [37] |
Strain | BioSample | Bioproject | Assembly | Size (Mb) | GC% | CDS | Ecological Origin | Geographical Origin | References | |
---|---|---|---|---|---|---|---|---|---|---|
CBS 2499 | SAMN00750237 | PRJNA76499 | GCA_000340765.1 | 13.36 | 40.3 | 5600 | wine | France | [36] | |
AWRI1499 | SAMN02261473 | PRJNA78661 | GCA_000259595.1 | 12.68 | 39.9 | 4861 | wine | Australia | [37] | |
CBS 2796 | SAMN05544770 | PRJNA335438 | GCA_001719535.1 | 11.77 | 39.8 | – | sparkling wine | France | [38] | |
UMY321 | SAMEA5744194 | PRJEB33245 | GCA_902155815.1 | 12.97 | 40.0 | 4666 | wine | Italy | [22,39] | |
LAMAP2480 | SAMN09981576 | PRJNA231184 | GCA_000688595.1 | 26.99 | 39.9 | – | wine | Chile | [41] | |
UCD 2041 | SAMN12257691 | PRJNA554210 | GCA_011074885.1 | 13.15 | 39.9 | – | fruit wine | United States | [42] | |
CBS 11270 | SAMEA104365571 | PRJEB11548 | GCA_900496985.1 | 15.39 | 41.6 | 4879 | industrial ethanol | Sweden | [43] | |
CRL–50 | SAMN13421994 | PRJNA592329 | GCA_012295375.1 | 17.82 | 39.8 | – | 2n | beer | Denmark | [45] |
Drug Concentration (µg mL−1) | Geneticin (G418) | Nourseothricin (NTC) | Hygromicin (Hyg) | Canavanine (Can) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | AWRI1499 | CBS2499 | |||||||||
(NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | (NH4)2SO4 | GLU | |
0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
50 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
100 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
200 | ± | – | + | – | – | – | – | – | – | – | ± | – | – | – | – | – |
300 | – | – | ± | – | – | – | – | – | – | – | – | – | – | – | – | – |
400 | – | – | ± | – | – | – | – | – | – | – | – | – | – | – | – | – |
500 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
600 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Vectors | Drug Resistance | Promotor | Terminator | Insertion | References |
---|---|---|---|---|---|
pMK–T–TDH1pr–kanMX | Kanamycin Geneticin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 KanR | [53,54] |
pMK–T–TDH1pr–natMX | Kanamycin Nourseothricin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 NatR | [53,54] |
pMK–T–TDH1pr–hygMX | Kanamycin Hygromicin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 HygR | [53,54] |
pMA–TDH1pr–natMX | Ampicillin Nourseothricin | BbTDH1 | AgTEF2 | BbTDH1, AgTEF2 NatR | [53,54] |
pMA–TDH1pr–natMX::GFP | Ampicillin Nourseothricin | ScFBA1 | ScPGK1 | BbTDH1, AgTEF2 NatR GFP | [53,54] |
pMA–TDH1pr–natMX::BFP | Ampicillin Nourseothricin | ScFBA1 | ScPGK1 | BbTDH1, AgTEF2 NatR BFP | [53,54] |
Procedure | Medium | OD600nm | Growth Temperature (°C) | Solution—Chemical Compounds | Transformation Efficiency | References |
---|---|---|---|---|---|---|
LiAc/PEG transformation | GYP; SCM | 0.60–0.75 | 28 °C | M LiAc– 50% PEG | 16 transformants μg−1 DNA | [49] |
Electroporation transformation | GYP | 0.25–0.35 | 28 °C | M LiAc– 0.5—1 M sorbitol | 2.8 × 103 transformants μg−1 DNA | [49,56] |
Spheroplast transformation | GYP; SCM | / | 28 °C | Zymolyase–0.5 M–1 M sorbitol | plating efficiency * 75%; 7.4% | [49] |
Spheroplast intraspecific fusion | YPD; MM | 1.00 | 30 °C | Snailase–PE buffer– PEG 4000 | ** | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Canito, A.; Foschino, R.; Mazzieri, M.; Vigentini, I. Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Appl. Sci. 2021, 11, 7302. https://doi.org/10.3390/app11167302
Di Canito A, Foschino R, Mazzieri M, Vigentini I. Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Applied Sciences. 2021; 11(16):7302. https://doi.org/10.3390/app11167302
Chicago/Turabian StyleDi Canito, Alessandra, Roberto Foschino, Martina Mazzieri, and Ileana Vigentini. 2021. "Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review" Applied Sciences 11, no. 16: 7302. https://doi.org/10.3390/app11167302
APA StyleDi Canito, A., Foschino, R., Mazzieri, M., & Vigentini, I. (2021). Molecular Tools to Exploit the Biotechnological Potential of Brettanomyces bruxellensis: A Review. Applied Sciences, 11(16), 7302. https://doi.org/10.3390/app11167302