Influence of Some Additives on the Properties of OPC Solidified Sandy Silt
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Preparation and Test Methods
3. Results
3.1. Unconfined Compression Test
3.2. Indirect Tensile Strength
3.3. Flexural Strength
3.4. Compression Rebound Modulus
3.5. FESEM Micrographs Analysis
3.6. XRD Result Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Y. Shenzhen 12.20 landslide disaster causes and security measure analysis. Land Res. Inf. 2016, 1, 39–43. [Google Scholar]
- Rojat, F.; Hamard, E.; Fabbri, A.; Carnus, B.; McGregor, F. Towards an easy decision tool to assess soil suitability for earth building. Constr. Build. Mater. 2020, 257, 119544. [Google Scholar] [CrossRef]
- Zheng, G.; Gong, X.N.; Xie, Y.L.; Li, G.X. Review on development of foundation process technology. J. Civ. Eng. 2012, 45, 127–146. [Google Scholar]
- Yuan, J.; Liu, X.W.; Chen, W.L. Effect of construction of deep excavation in Hangzhou silty sand on adjacent metro tunnels and stations. Chin. J. Geotech. Eng. 2012, 34, 398–403. [Google Scholar]
- Liu, C.; Ma, Y.F. Comparative test on vibroflotation without backfill and dynamic compaction for soft foundation treatment. Port Waterw. Eng. 2016, 11, 167–173. [Google Scholar]
- Qu, J.L.; Zhu, H. Modifying mechanical properties of Shanghai clayey soil with construction waste and pulverized lime. Sci. Eng. Compos. Mater. 2020, 27, 163–176. [Google Scholar]
- Jiang, Y.Z. Water immersion-induced strength performance of solidified soils with reactive MgO-a green and low carbon binder. J. Test. Eval. 2019, 47, 1569–1585. [Google Scholar]
- Qu, B.; Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández-Jiménez, A. Microstructural characterisation of hybrid cement after exposure to high temperatures. Constr. Build. Mater. 2020, 262, 120843. [Google Scholar] [CrossRef]
- Qu, B.; Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández-Jiménez, A. Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature. Cem. Concr. Compos. 2016, 73, 281–288. [Google Scholar] [CrossRef]
- Sivapullaiah, P.V.; Lakshmikantha, H. Chemical compatibility of lime stabilized Indian red earth as liner material. Soil Sediment Contam. 2005, 14, 515–526. [Google Scholar] [CrossRef]
- Oza, J.B.; Gundaliya, P.J. Study of black cotton soil characteristics with cement waste dust and lime. In Proceedings of the 3rd Nirma-University International Conference on Engineering (NUICONE), Ahmedabad, India, 6–8 December 2012. [Google Scholar]
- Yilmaz, Y.; Ozaydin, V. Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils. Eng. Geol. 2013, 155, 45–53. [Google Scholar] [CrossRef]
- Lee, F.H.; Lee, Y.; Chew, S.H.; Yong, K.Y. Strength and modulus of marine clay-cement mixes. J. Geotech. Geoenviron. Eng. 2005, 131, 178–186. [Google Scholar] [CrossRef]
- Narendra, B.S.; Sivapullaiah, P.V.; Suresh, S.; Omkar, S.N. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: A comparative study. Comput. Geotech. 2006, 33, 196–208. [Google Scholar] [CrossRef]
- Ribeiro, D.; Neri, R.; Cardoso, R. Influence of water content in the UCS of soil-cement mixtures for different cement dosages. Procedia Eng. 2016, 143, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Consoli, N.C.; Ferreira, P.M.V.; Tang, C.S.; Marques, S.F.V.; Festugato, L.; Corte, M.B. A unique relationship determining strength of silty/clayey soils—Portland cement mixes. Soils Found. 2016, 56, 1082–1088. [Google Scholar] [CrossRef]
- Gao, G.Y.; Yao, S.F.; Cui, Y.J.; Chen, Q.S.; Zhang, X.L.; Wang, K.W. Zoning of confined aquifers inrush and quicksand in Shanghai region. Nat. Hazards 2018, 91, 1341–1363. [Google Scholar] [CrossRef]
- Chatra, A.S.; Dodagoudar, G.R.; Maji, V.B. Numerical modelling of rainfall effects on the stability of soil slopes. Int. J. Geotech. Eng. 2019, 13, 425–437. [Google Scholar] [CrossRef]
- Shu, A.; Zhou, X.; Duan, G. Estimation for the riverbank collapse volume with sandy-riverbank in the desert reach of the upper Yellow River. In Proceedings of the 13th International Symposium on River Sedimentation (ISRS), Stuttgart, Germany, 19 September 2016. [Google Scholar]
- Ueng, T.S.; Wang, Z.F.; Chu, M.C.; Ge, L. Laboratory tests for permeability of sand during liquefaction. Soil Dyn. Earthq. Eng. 2017, 100, 249–256. [Google Scholar] [CrossRef]
- Moruzzi, R.B.; Bridgeman, J.; Silva, P.A.G. A combined experimental and numerical approach to the assessment of floc settling velocity using fractal geometry. Waste Sci. Technol. 2020, 81, 915–924. [Google Scholar]
- Sutherland, B.R.; Barrett, K.J.; Gingras, M.K. Clay settling in fresh and salt water. Environ. Fluid Mech. 2015, 15, 147–160. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Li, J.Z. Test method and application for microstructures of undisturbed silty sand and sandy silt. Environ. Earth Sci. 2018, 77, 602–610. [Google Scholar] [CrossRef]
- GB/T 50123-2019 Standard for Geotechnical Testing Method; Ministry of Housing and Urban-Rural Development: Beijing, China, 2019.
- Wang, Y.Q.; Tan, Y.Q.; Guo, M.; Liu, Z.Y.; Wang, X.L. Study on the dynamic compressive resilient modulus and frost resistance of semi-rigid base materials. Road Mater. Pavement 2017, 18, 259–269. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.M.; Wu, Q.; Zhang, Z.M.; Zhang, Z.N. Variations of bound water and microstructure in consolidation-creep process of Shanghai mucky clay. Rock Soil Mech. 2017, 38, 2806–2816. [Google Scholar]
- Saeed, K.A.; Kassim, K.A.; Nur, H.; Yunus, N.Z.M. Strength of lime-cement stabilized tropical lateritic clay contaminated by heavy metals. KSCE J. Civ. Eng. 2015, 19, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Donatello, S.; Maltseva, O.; Fernandez-Jimenez, A.; Palomo, A. The early age hydration reactions of a hybrid cement containing a very high content of coal bottom ash. J. Am. Ceram. Soc. 2014, 97, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Jiménez, A.; Pastor, J.Y.; Martin, A.; Palomo, A. High-temperature resistance in alkali-activated cement. J. Am. Ceram. Soc. 2010, 93, 3411–3417. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Pastor, J.Y.; Martin, A. New cementitious materials based on alkali-activated fly ash: Performance at high temperatures. J. Am. Ceram. Soc. 2010, 91, 3308–3314. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.Y.; Wu, D.Z.; Yi, M.; Cai, Q.M.; Zhang, Z.Y. Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Constr. Build. Mater. 2021, 281, 122566. [Google Scholar] [CrossRef]
Initial Setting Time/(min) | Final Setting Time/(min) | Compressive Strength/(MPa) | Flexural Strength/(MPa) | ||
---|---|---|---|---|---|
3d | 28d | 3d | 28d | ||
150 ± 3 | 210 + 5 | 27.5 ± 1.4 | 49.6 ± 2.0 | 5.5 ± 0.6 | 9.0 ± 1.0 |
Material | SiO2 | Fe2O3 | Al2O3 | CaO | MgO | SO2 | SO3 | Others | LOI a |
---|---|---|---|---|---|---|---|---|---|
OPC | 21.14 | 2.70 | 4.70 | 63.66 | 2.61 | — | 2.53 | 1.21 | 1.45 |
Gypsum | 2.68 | 0.37 | 0.54 | 36.12 | 1.03 | 42.7 | — | 14.51 | 2.05 |
Lime | 1.74 | — | 0.56 | 93.64 | 1.37 | — | 1.14 | 0.90 | 0.65 |
Fly ash | 58.05 | 4.32 | 30.10 | 1.53 | 2.81 | — | 0.43 | 1.82 | 0.94 |
Additives | Content/% | Specimen Mark |
---|---|---|
None | 0 | S11 |
Gypsum | 2, 3, 4 | SS2, SS3, SS4 |
Clay particle | 2, 3, 4 | SN2, SN3, SN4 |
Lime | 2, 3, 4 | SH2, SH3, SH4 |
Fly ash | 2, 3, 4 | SF2, SF3, SF4 |
Additives | Content/% | Mixture | Curing Days | ||||
---|---|---|---|---|---|---|---|
7 | 14 | 28 | 60 | 90 | |||
None | 0 | S11 | 1.46 ± 0.13 | 2.03 ± 0.19 | 2.43 ± 0.18 | 3.39 ± 0.22 | 3.44 ± 0.23 |
Gypsum | 2 | SS2 | 1.43 ± 0.21 | 2.26 ± 0.18 | 2.89 ± 0.24 | 3.45 ± 0.21 | 3.46 ± 0.25 |
3 | SS3 | 0.81 ± 0.09 | 1.42 ± 0.12 | 2.61 ± 0.18 | 3.41 ± 0.21 | 3.37 ± 0.23 | |
4 | SS4 | 0.78 ± 0.11 | 1.14 ± 0.14 | 2.29 ± 0.16 | 3.26 ± 0.20 | 3.28 ± 0.24 | |
Clay particles | 2 | SN2 | 1.39 ± 0.18 | 2.07 ± 0.21 | 2.83 ± 0.22 | 3.09 ± 0.26 | 3.08 ± 0.25 |
3 | SN3 | 1.74 ± 0.16 | 2.26 ± 0.19 | 2.94 ± 0.20 | 3.19 ± 0.18 | 3.17 ± 0.19 | |
4 | SN4 | 1.79 ± 0.08 | 2.45 ± 0.11 | 3.03 ± 0.21 | 3.32 ± 0.23 | 3.30 ± 0.20 | |
Lime | 2 | SH2 | 0.80 ± 0.12 | 1.11 ± 0.08 | 1.33 ± 0.11 | 1.50 ± 0.12 | 1.53 ± 0.14 |
3 | SH3 | 0.61 ± 0.13 | 0.75 ± 0.09 | 0.87 ± 0.11 | 1.07 ± 0.10 | 1.12 ± 0.08 | |
4 | SH4 | 0.44 ± 0.09 | 0.59 ± 0.05 | 0.66 ± 0.08 | 0.74 ± 0.11 | 0.79 ± 0.12 | |
Fly ash | 2 | SF2 | 1.28 ± 0.12 | 2.00 ± 0.18 | 2.91 ± 0.19 | 3.44 ± 0.24 | 3.64 ± 0.25 |
3 | SF3 | 1.52 ± 0.13 | 2.35 ± 0.22 | 2.90 ± 0.19 | 3.70 ± 0.25 | 3.81 ± 0.28 | |
4 | SF4 | 1.55 ± 0.13 | 2.28 ± 0.18 | 2.97 ± 0.21 | 3.73 ± 0.23 | 3.96 ± 0.25 |
Additives | Content/% | Mixture | Curing Days | ||||
---|---|---|---|---|---|---|---|
7 | 14 | 28 | 60 | 90 | |||
None | 0 | S11 | 0.18 ± 0.01 | 0.25 ± 0.02 | 0.40 ± 0.03 | 0.46 ± 0.03 | 0.46 ± 0.04 |
Gypsum | 2 | SS2 | 0.19 ± 0.02 | 0.29 ± 0.03 | 0.39 ± 0.03 | 0.59 ± 0.04 | 0.59 ± 0.03 |
3 | SS3 | 0.09 ± 0.01 | 0.15 ± 0.01 | 0.34 ± 0.02 | 0.55 ± 0.04 | 0.56 ± 0.05 | |
4 | SS4 | 0.08 ± 0.01 | 0.11 ± 0.01 | 0.16 ± 0.02 | 0.47 ± 0.05 | 0.49 ± 0.04 | |
Clay particles | 2 | SN2 | 0.22 ± 0.02 | 0.27 ± 0.02 | 0.36 ± 0.03 | 0.40 ± 0.03 | 0.40 ± 0.05 |
3 | SN3 | 0.23 ± 0.05 | 0.30 ± 0.03 | 0.38 ± 0.03 | 0.41 ± 0.05 | 0.41 ± 0.06 | |
4 | SN4 | 0.23 ± 0.02 | 0.30 ± 0.02 | 0.39 ± 0.04 | 0.43 ± 0.06 | 0.43 ± 0.05 | |
Lime | 2 | SH2 | 0.10 ± 0.01 | 0.15 ± 0.02 | 0.19 ± 0.02 | 0.21 ± 0.03 | 0.21 ± 0.03 |
3 | SH3 | 0.07 ± 0.01 | 0.09 ± 0.02 | 0.12 ± 0.02 | 0.14 ± 0.02 | 0.15 ± 0.02 | |
4 | SH4 | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.03 | 0.11 ± 0.03 | |
Fly ash | 2 | SF2 | 0.19 ± 0.02 | 0.26 ± 0.03 | 0.38 ± 0.04 | 0.49 ± 0.05 | 0.53 ± 0.06 |
3 | SF3 | 0.18 ± 0.02 | 0.31 ± 0.03 | 0.42 ± 0.04 | 0.53 ± 0.05 | 0.54 ± 0.04 | |
4 | SF4 | 0.20 ± 0.01 | 0.30 ± 0.02 | 0.43 ± 0.04 | 0.54 ± 0.05 | 0.58 ± 0.03 |
Additives | Content/% | Mixture | Curing Days | ||||
---|---|---|---|---|---|---|---|
7 | 14 | 28 | 60 | 90 | |||
None | 0 | S11 | 0.32 ± 0.03 | 0.47 ± 0.05 | 0.62 ± 0.06 | 0.87 ± 0.05 | 0.88 ± 0.06 |
Gypsum | 2 | SS2 | 0.21 ± 0.03 | 0.48 ± 0.05 | 0.66 ± 0.04 | 0.97 ± 0.11 | 1.01 ± 0.08 |
Clay particles | 4 | SN4 | 0.34 ± 0.02 | 0.54 ± 0.03 | 0.73 ± 0.05 | 0.85 ± 0.08 | 0.85 ± 0.10 |
Fly ash | 4 | SF4 | 0.38 ± 0.01 | 0.56 ± 0.02 | 0.76 ± 0.04 | 1.00 ± 0.05 | 1.02 ± 0.07 |
Additives | Content/% | Mixture | Curing Days | ||||
---|---|---|---|---|---|---|---|
7 | 14 | 28 | 60 | 90 | |||
None | 0 | S11 | 389.36 ± 28.66 | 545.71 ± 45.19 | 694.18 ± 53.12 | 963.32 ± 66.23 | 1012.6 ± 58.72 |
Gypsum | 2 | SS2 | 314.05 ± 13.54 | 674.96 ± 34.23 | 811.96 ± 42.15 | 1105.19 ± 63.14 | 1133.77 ± 68.05 |
Clay particles | 4 | SN4 | 391.16 ± 18.61 | 694.62 ± 54.20 | 1059.44 ± 33.14 | 1234.31 ± 70.05 | 1248.5 ± 57.62 |
Fly ash | 4 | SF4 | 470.94 ± 23.55 | 689.63 ± 47.08 | 1170.19 ± 72.12 | 1286.85 ± 68.26 | 1321.01 ± 86.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Chen, K.; Zhang, Z.; Chang, L. Influence of Some Additives on the Properties of OPC Solidified Sandy Silt. Appl. Sci. 2021, 11, 7252. https://doi.org/10.3390/app11167252
Wu D, Chen K, Zhang Z, Chang L. Influence of Some Additives on the Properties of OPC Solidified Sandy Silt. Applied Sciences. 2021; 11(16):7252. https://doi.org/10.3390/app11167252
Chicago/Turabian StyleWu, Dazhi, Keyu Chen, Zilong Zhang, and Lifu Chang. 2021. "Influence of Some Additives on the Properties of OPC Solidified Sandy Silt" Applied Sciences 11, no. 16: 7252. https://doi.org/10.3390/app11167252
APA StyleWu, D., Chen, K., Zhang, Z., & Chang, L. (2021). Influence of Some Additives on the Properties of OPC Solidified Sandy Silt. Applied Sciences, 11(16), 7252. https://doi.org/10.3390/app11167252