A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Peptide Synthesis
2.3. AuNP Synthesis and Their Biofunctionalization with VEGF-FAM Peptides
2.4. UV-Visible and FT-IR Spectroscopies
2.5. Electron Transmission Microscopy (TEM)
2.6. Dynamic Light Scattering (DLS) and ζ-Potential (ZP)
2.7. X-ray Photoelectron Spectroscopy (XPS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Analysis
2.8. Cell Viability Assay (MTT)
2.9. Laser Scanning Confocal Microscopy (LSM) Analyses
3. Results
3.1. Synthesis and Physicochemical Characterization
3.2. Cytotoxicity and Cellular Uptake
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kazerounian, S.; Lawler, J. Integration of pro- and anti-angiogenic signals by endothelial cells. J. Cell Commun. Signal. 2017, 12, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Mendola, D.; Giacomelli, C.; Rizzarelli, E. Intracellular Bioinorganic Chemistry and Cross Talk among Different -Omics. Curr. Top. Med. Chem. 2016, 16, 3103–3130. [Google Scholar] [CrossRef] [PubMed]
- Naumov, G.N.; Akslen, L.A.; Folkman, J. Role of Angiogenesis in Human Tumor Dormancy: Animal Models of the Angiogenic Switch. Cell Cycle 2006, 5, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Vallon, M.; Chang, J.; Zhang, H.; Kuo, C.J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 2014, 71, 3489–3506. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, N. Vascular Endothelial Growth Factor: Molecular and Biological Aspects. In Vascular Growth Factors and Angiogenesis (Current Topics in Microbiology and Immunology); Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–30. [Google Scholar]
- Ferrara, N.; Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 1989, 161, 851–858. [Google Scholar] [CrossRef]
- Li, X. Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int. J. Biochem. Cell Biol. 2001, 33, 421–426. [Google Scholar] [CrossRef]
- Houck, K.A.; Ferrara, N.; Winer, J.; Cachianes, G.; Li, B.; Leung, D.W. The Vascular Endothelial Growth Factor Family: Identification of a Fourth Molecular Species and Characterization of Alternative Splicing of RNA. Mol. Endocrinol. 1991, 5, 1806–1814. [Google Scholar] [CrossRef]
- Tischer, E.; Mitchell, R.; Hartman, T.; Silva, M.; Gospodarowicz, D.; Fiddes, J.C.; Abraham, J.A. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 1991, 266, 11947–11954. [Google Scholar] [CrossRef]
- Houck, K.A.; Leung, D.W.; Rowland, A.M.; Winer, J.; Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 1992, 267, 26031–26037. [Google Scholar] [CrossRef]
- de Vries, C.; Escobedo, J.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 255, 989–991. [Google Scholar] [CrossRef]
- Waltenberger, J.; Claesson-Welsh, L.; Siegbahn, A.; Shibuya, M.; Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994, 269, 26988–26995. [Google Scholar] [CrossRef]
- Rosca, E.V.; Koskimaki, J.E.; Rivera, C.G.; Pandey, N.B.; Tamiz, A.P.; Popel, A.S. Anti-Angiogenic Peptides for Cancer Therapeutics. Curr. Pharm. Biotechnol. 2011, 12, 1101–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Phillip Bowen, J. Recent Advances in Small Molecule Inhibitors of VEGFR and EGFR Signaling Pathways. Curr. Top. Med. Chem. 2011, 11, 1571–1590. [Google Scholar] [CrossRef] [PubMed]
- Finetti, F.; Basile, A.; Capasso, D.; Di Gaetano, S.; Di Stasi, R.; Pascale, M.; Turco, C.M.; Ziche, M.; Morbidelli, L.; D’Andrea, L.D. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem. Pharmacol. 2012, 84, 303–311. [Google Scholar] [CrossRef]
- Neves, K.B.; Montezano, A.C.; Lang, N.N.; Touyz, R.M. Vascular toxicity associated with anti-angiogenic drugs. Clin. Sci. 2020, 134, 2503–2520. [Google Scholar] [CrossRef]
- Bartczak, D.; Muskens, O.L.; Sanchez-Elsner, T.; Kanaras, A.G.; Millar, T.M. Manipulation ofin VitroAngiogenesis Using Peptide-Coated Gold Nanoparticles. ACS Nano 2013, 7, 5628–5636. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 2008, 60, 1289–1306. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Lee, K.-J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009, 30, 6341–6350. [Google Scholar] [CrossRef]
- Sangiliyandi, G. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 2010. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.C.; Chang, L.; Huang, C.C.; Chang, H.T. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomater. Sci. 2019, 7, 4482–4490. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Mukherjee, P.; Xiong, Z.; Atala, A.; Soker, S.; Mukhopadhyay, D. Gold Nanoparticles Inhibit VEGF165-Induced Proliferation of HUVEC Cells. Nano Lett. 2004, 4, 2479–2481. [Google Scholar] [CrossRef]
- Chan, C.-M.; Hsiao, C.-Y.; Li, H.-J.; Fang, J.-Y.; Chang, D.-C.; Hung, C.-F. The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. Int. J. Mol. Sci. 2019, 21, 109. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, Y.; Gao, J.; Zhang, Z.; Wang, L.; Chen, X.; Mi, J.; Yao, Y.; Guan, D.; Chen, B.; et al. Transdermal Vascular Endothelial Growth Factor Delivery with Surface Engineered Gold Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 5173–5180. [Google Scholar] [CrossRef] [PubMed]
- Trapani, G.; Satriano, C.; La Mendola, D. Peptides and their Metal Complexes in Neurodegenerative Diseases: From Structural Studies to Nanomedicine Prospects. Curr. Med. Chem. 2018, 25, 715–747. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Ma, G.; Yuan, Z.; Qian, H.; Xu, L.; Sidransky, E.; Chen, S. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir 2018, 35, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Arriortua, O.K.; Insausti, M.; Lezama, L.; Gil de Muro, I.; Garaio, E.; de la Fuente, J.M.; Fratila, R.M.; Morales, M.P.; Costa, R.; Eceiza, M.; et al. RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids Surf. B Biointerfaces 2018, 165, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Paris, J.L.; Villaverde, G.; Gómez-Graña, S.; Vallet-Regí, M. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. Acta Biomater. 2020, 101, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Santoro, A.M.; Magrì, A.; La Mendola, D.; Tomasello, M.F.; Zimbone, S.; Rizzarelli, E. The Inorganic Perspective of VEGF: Interactions of Cu2+ with Peptides Encompassing a Recognition Domain of the VEGF Receptor. J. Inorg. Biochem. 2016, 159, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Zimbone, S.; Santoro, A.M.; La Mendola, D.; Giacomelli, C.; Trincavelli, M.L.; Tomasello, M.F.; Milardi, D.; García-Viñuales, S.; Sciacca, M.F.M.; Martini, C.; et al. The Ionophoric Activity of a Pro-Apoptotic VEGF165 Fragment on HUVEC Cells. Int. J. Mol. Sci. 2020, 21, 2866. [Google Scholar] [CrossRef] [Green Version]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.; Hearn, M.J. Interaction of ion beams with polymers, with particular reference to SIMS. Vacuum 1986, 36, 1005–1010. [Google Scholar] [CrossRef]
- Denis, L.; Cossement, D.; Godfroid, T.; Renaux, F.; Bittencourt, C.; Snyders, R.; Hecq, M. Synthesis of Allylamine Plasma Polymer Films: Correlation between Plasma Diagnostic and Film Characteristics. Plasma Process. Polym. 2009, 6, 199–208. [Google Scholar] [CrossRef]
- Di Pietro, P.; Caporarello, N.; Anfuso, C.D.; Lupo, G.; Magrì, A.; La Mendola, D.; Satriano, C. Immobilization of Neurotrophin Peptides on Gold Nanoparticles by Direct and Lipid-Mediated Interaction: A New Multipotential Therapeutic Nanoplatform for CNS Disorders. ACS Omega 2017, 2, 4071–4079. [Google Scholar] [CrossRef] [Green Version]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef]
- Di Pietro, P.; Zaccaro, L.; Comegna, D.; Del Gatto, A.; Saviano, M.; Snyders, R.; Cossement, D.; Satriano, C.; Rizzarelli, E. Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: A versatile integrin targeting platform for cells and bacteria. RSC Adv. 2016, 6, 112381–112392. [Google Scholar] [CrossRef]
- Hu, Z.; Ritzdorf, T. Superconformal Electrochemical Deposition of Gold for Metallization in Microelectronic Devices. J. Electrochem. Soc. 2006, 153. [Google Scholar] [CrossRef]
- Semenov, A.; Spatz, J.P.; Möller, M.; Lehn, J.-M.; Sell, B.; Schubert, D.; Weidl, C.H.; Schubert, U.S. Controlled Arrangement of Supramolecular Metal Coordination Arrays on Surfaces. Angew. Chem. Int. Ed. 1999, 38, 2547–2550. [Google Scholar] [CrossRef]
- Zhong, C.-J.; Porter, M.D. Evidence for Carbon-Sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-Based Monolayers at Gold. J. Am. Chem. Soc. 2002, 116, 11616–11617. [Google Scholar] [CrossRef]
- Castner, D.G.; Hinds, K.; Grainger, D.W. X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces. Langmuir 1996, 12, 5083–5086. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Van Remmen, H.; Richardson, A.; Wehr, N.B.; Levine, R.L. Methionine oxidation and aging. Biochim. Biophys. Acta (BBA) Proteins Proteomics 2005, 1703, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Joseph, Y.; Besnard, I.; Rosenberger, M.; Guse, B.; Nothofer, H.-G.; Wessels, J.M.; Wild, U.; Knop-Gericke, A.; Su, D.; Schlögl, R.; et al. Self-Assembled Gold Nanoparticle/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport, and Vapor-Sensing Properties†. J. Phys. Chem. B 2003, 107, 7406–7413. [Google Scholar] [CrossRef]
- Martí, A.; Costero, A.M.; Gaviña, P.; Gil, S.; Parra, M.; Brotons-Gisbert, M.; Sánchez-Royo, J.F. Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. Eur. J. Org. Chem. 2013, 2013, 4770–4779. [Google Scholar] [CrossRef]
- Frasconi, M.; Marotta, R.; Markey, L.; Flavin, K.; Spampinato, V.; Ceccone, G.; Echegoyen, L.; Scanlan, E.M.; Giordani, S. Multi-Functionalized Carbon Nano-onions as Imaging Probes for Cancer Cells. Chem. Eur. J. 2015, 21, 19071–19080. [Google Scholar] [CrossRef]
- Jimenez Jimenez, A.M.; Rodrigo, M.A.M.; Milosavljevic, V.; Krizkova, S.; Kopel, P.; Heger, Z.; Adam, V. Gold nanoparticles-modified nanomaghemite and quantum dots-based hybridization assay for detection of HPV. Sens. Actuators B Chem. 2017, 240, 503–510. [Google Scholar] [CrossRef]
- Shaffer, R.E. Multi- and Megavariate Data Analysis. Principles and Applications; Eriksson, I., Johansson, E., Kettaneh-Wold, N., Wold, S., Eds.; Umetrics Academy: Umeå, Sweden, 2001; 533p, ISBN 91-973730-1-X. [Google Scholar]
- Wagner, M.S.; McArthur, S.L.; Shen, M.; Horbett, T.A.; Castner, D.G. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): Detection of low amounts of adsorbed protein. J. Biomater. Sci. Polym. Ed. 2012, 13, 407–428. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer 2013, 13, 871–882. [Google Scholar] [CrossRef]
- Vicari, D.; Foy, K.C.; Liotta, E.M.; Kaumaya, P.T.P. Engineered Conformation-dependent VEGF Peptide Mimics Are Effective in Inhibiting VEGF Signaling Pathways. J. Biol. Chem. 2011, 286, 13612–13625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, Y.A.; Li, B.; Christinger, H.W.; Wells, J.A.; Cunningham, B.C.; de Vos, A.M. Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA 1997, 94, 7192–7197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Q.T.; Kuo, C.J. Vascular endothelial growth factor: Biology and therapeutic applications. Int. J. Biochem. Cell Biol. 2007, 39, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Ho, K.; Keating, A.; Shoichet, M.S. Doxorubicin-Conjugated Immuno-Nanoparticles for Intracellular Anticancer Drug Delivery. Adv. Funct. Mater. 2009, 19, 1689–1696. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Q.; Qin, L.; Cai, J.; Du, B. Gold Nanoparticles Inhibit VEGF165-Induced Migration and Tube Formation of Endothelial Cells via the Akt Pathway. BioMed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 2011, 32, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; et al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pietro, P.; Strano, G.; Zuccarello, L.; Satriano, C. Gold and Silver Nanoparticles for Applications in Theranostics. Curr. Top. Med. Chem. 2016, 16, 3069–3102. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X.-J. Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano 2011, 5, 8629–8639. [Google Scholar] [CrossRef]
- Sanfilippo, V.; Caruso, V.C.L.; Cucci, L.M.; Inturri, R.; Vaccaro, S.; Satriano, C. Hyaluronan-Metal Gold Nanoparticle Hybrids for Targeted Tumor Cell Therapy. Int. J. Mol. Sci. 2020, 21, 3085. [Google Scholar] [CrossRef]
- Lee, D.; Hong, J.H. Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics 2020, 12, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, R.C.; Woldemichael, T.; Rosania, G.R. The physiological determinants of drug-induced lysosomal stress resistance. PLoS ONE 2017, 12, e0187627. [Google Scholar] [CrossRef] [Green Version]
- Cucci, L.M.; Trapani, G.; Hansson, Ö.; La Mendola, D.; Satriano, C. Gold Nanoparticles Functionalized with Angiogenin for Wound Care Application. Nanomaterials 2021, 11, 201. [Google Scholar] [CrossRef] [PubMed]
Samples | C 1s (at.%) | O 1s (at.%) | S 2p (at.%) | N 1s (at.%) | Au 4f (at.%) |
---|---|---|---|---|---|
Bare AuNPs | 54.6 | 34.3 | - | - | 11.1 |
AuNPs/VEGFCysFAM | 8.0 | 3.6 | 1.0 | - | 87.4 |
VEGFCysFAM | 66.7 | 18.5 | 2.0 | 12.9 | - |
AuNPs/VEGFGlyFAM | 9.5 | 4.5 | 0.9 | 1.5 | 83.7 |
VEGFGlyFAM | 67.3 | 15.7 | 1.6 | 15.3 | - |
PC1 < 0 | PC1 > 0 | ||||||
---|---|---|---|---|---|---|---|
Na+ | C7H7+ | C6H6+ | C6H8+ | C4H6+ | C4H4+ | C5H9O+ | C5H12N+ |
C8H11+ | C3H5O+ | C5H9+ | C2H3+ | C4H7O+ | C7H5+ | C2H6NS+ | |
C6H7+ | C5H7O+ | C4H6N+ | C7H6+ | C9H8N+ | C5H10N+ | CH2+ | |
CHO+ | C10H8+ | C7H7O+ | C4H8N+ | C9H8N+ | C5H10N+ | CH2+ | |
C5H7N2+ | C8H9O+ | C3H4NO+ | C3H2+ | C3H6+ | C2H6N+ | CH+ | |
C6H9+ | C4H6O+ | C2H4+ | C3H3+ | C3H5+ | NH4+ | CH3+ | |
C4H5O+ | C5H5+ | C8H9+ | C4H5+ | C5H4+ | C8H6O+ | C2H5+ | |
C4H8+ | CH2N+ | C7H11+ | C2H4N+ | C5H2+ | C8H10NO+ | Au+ | |
C8H8+ | C6H10+ | C4H6NO+ | C3H3O+ | C6H11+ | C12H9O+ | H+ | |
C3H4O+ | C7H9+ | NH3+ | C9H8+ | C2H6NO+ | C6H10O+ | C3H5O2+ | |
C7H8+ | C9H7+ | C5H7+ | C8H10N+ | C4H7+ | C2H3O+ | C2H5O2+ | |
C5H8O+ | C5H8+ | CH4N+ | C5H3+ | CH3O+ | C7H13+ | C2H5O+ | |
C9H9+ | C10H9+ | C2H4O+ | C4H3+ | CH3N2+ | C7H5O+ | C4H9+ | |
C+ | C3H7+ | C5H11+ | C8H7O+ | C8H7+ | C6H5+ | C4H2+ |
PC1 > 0 | ||||||
---|---|---|---|---|---|---|
C5H7+ | C2H4+ | C7H7O+ | C8H10NO+ | CH2N+ | C12H9O+ | C5H12N+ |
C6H9+ | C2H3+ | C7H6+ | C5H9+ | C6H5+ | CHO+ | C3H7O2+ |
C8H9+ | C8H11+ | C4H7+ | C3H2+ | C8H8+ | C5H11+ | CH+ |
C6H8+ | C4H10N+ | CH3O+ | C2H5+ | C8H10N+ | C4H4+ | C10H9+ |
C4H5+ | C5H8O+ | C8H7O+ | C4H8+ | C7H7+ | C7H5+ | C9H8+ |
C5H7N2+ | C3H5O+ | C3H6+ | C3H5O2+ | C7H13+ | NH4+ | CH4N+ |
C4H5O+ | C3H5+ | C4H7O+ | C7H8+ | C3H7O+ | CH3N2+ | C4H3+ |
C3H3+ | C5H7O+ | C6H10O+ | C4H6O+ | C4H9+ | C5H10N+ | C4H8N+ |
C6H7+ | C3H3O+ | C4H6N+ | C2H4O+ | C2H4O2+ | C4H6NO+ | C2H6N+ |
C8H7+ | C4H6+ | C8H9O+ | C2H5O+ | C2H6NO+ | C2H5O2+ | C4H2+ |
C7H9+ | C5H8+ | C3H4O+ | C2H4N+ | C3H7+ | C5H5+ | C5H4+ |
C6H10+ | C3H4NO+ | C9H9+ | C6H11+ | H+ | CH2+ | C5H3+ |
C7H11+ | C5H9O+ | C8H6O+ | C2H3O+ | CH3+ | C6H6+ | C2H6NS+ |
C+ | C7H5O+ | C5H2+ | C10H8+ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pietro, P.; Zimbone, S.; Grasso, G.; La Mendola, D.; Cossement, D.; Snyders, R.; Satriano, C. A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor. Appl. Sci. 2021, 11, 6333. https://doi.org/10.3390/app11146333
Di Pietro P, Zimbone S, Grasso G, La Mendola D, Cossement D, Snyders R, Satriano C. A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor. Applied Sciences. 2021; 11(14):6333. https://doi.org/10.3390/app11146333
Chicago/Turabian StyleDi Pietro, Patrizia, Stefania Zimbone, Giulia Grasso, Diego La Mendola, Damien Cossement, Rony Snyders, and Cristina Satriano. 2021. "A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor" Applied Sciences 11, no. 14: 6333. https://doi.org/10.3390/app11146333
APA StyleDi Pietro, P., Zimbone, S., Grasso, G., La Mendola, D., Cossement, D., Snyders, R., & Satriano, C. (2021). A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor. Applied Sciences, 11(14), 6333. https://doi.org/10.3390/app11146333