Effect of the Location of Strut Chordae Insertion on Computational Modeling and Biomechanical Evaluation of Mitral Valve Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virtual Parametric MV Modeling
2.2. SC Modeling and Alteration of SC Insertion Location
2.3. Dynamic Finite Element Simulation of MV Function
2.4. Evaluation of the Effect of the Alteration of SC Insertion Location
3. Results
3.1. Coaptation Distribution and Leaflet Stress Distribution
3.2. Leaflet Morphology and Mobility
3.3. Anterior Leaflet Bulging Distance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mestres, C.A.; Bernal, J.M. Mitral valve repair: The chordae tendineae. J. Tehran Heart Cent. 2012, 7, 92–99. [Google Scholar]
- Chen, L.; Yin, F.C.; May-Newman, K. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 2004, 126, 244–251. [Google Scholar] [CrossRef]
- Degandt, A.A.; Weber, P.A.; Saber, H.A.; Duran, C.M. Mitral valve basal chordae: Comparative anatomy and terminology. Ann. Thorac. Surg. 2007, 84, 1250–1255. [Google Scholar] [CrossRef]
- Goetz, W.A.; Lim, H.S.; Lansac, E.; Saber, H.A.; Pekar, F.; Weber, P.A.; Duran, C.M. Anterior mitral basal ′stay′ chords are essential for left ventricular geometry and function. J. Heart Valve Dis. 2005, 14, 195–202. [Google Scholar] [PubMed]
- Goetz, W.A.; Lim, H.S.; Pekar, F.; Saber, H.A.; Weber, P.A.; Lansac, E.; Birnbaum, D.E.; Duran, C.M. Anterior mitral leaflet mobility is limited by the basal stay chords. Circulation 2003, 107, 2969–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; May-Newman, K. Effect of strut chordae transection on mitral valve leaflet biomechanics. Ann. Biomed. Eng. 2006, 34, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.H.; Sareli, P.; Pocock, W.A.; Meyer, T.E.; Magalhaes, M.P.; Grieve, T.; Antunes, M.J.; Barlow, J.B. Functional anatomy of severe mitral regurgitation in active rheumatic carditis. Am. J. Cardiol. 1989, 63, 577–584. [Google Scholar] [CrossRef]
- van Rijk-Zwikker, G.L.; Delemarre, B.J.; Huysmans, H.A. Mitral valve anatomy and morphology: Relevance to mitral valve replacement and valve reconstruction. J. Card. Surg. 1994, 9, 255–261. [Google Scholar] [CrossRef]
- Obadia, J.F.; Casali, C.; Chassignolle, J.F.; Janier, M. Mitral subvalvular apparatus: Different functions of primary and secondary chordae. Circulation 1997, 96, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Obadia, J.F.; Janier, M. Second order anterior mitral leaflets play a role in preventing systolic anterior motion. Ann. Thorac. Surg. 2002, 73, 1689–1690. [Google Scholar] [CrossRef]
- Kunzelman, K.S.; Cochran, R.P.; Chuong, C.; Ring, W.S.; Verrier, E.D.; Eberhart, R.D. Finite element analysis of the mitral valve. J. Heart Valve Dis. 1993, 2, 326–340. [Google Scholar] [PubMed]
- Padala, M.; Gyoneva, L.; Yoganathan, A.P. Effect of anterior strut chordal transection on the force distribution on the marginal chordae of the mitral valve. J. Thorac. Cardiovasc. Surg. 2012, 144, 624–633.e2. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Qi, N.; Gao, H.; Sun, W.; Vazquez, M.; Griffith, B.E.; Luo, X. On the chordae structure and dynamic behaviour of the mitral valve. IMA J. Appl. Math. 2018, 83, 1066–1091. [Google Scholar] [CrossRef]
- Khalighi, A.H.; Rego, B.V.; Drach, A.; Gorman, R.C.; Gorman, J.H., 3rd; Sacks, M.S. Development of a functionally equivalent model of the mitral valve chordae tendineae through topology optimization. Ann. Biomed. Eng. 2019, 47, 60–74. [Google Scholar] [CrossRef]
- Panicheva, D.; Villard, P.F.; Hammer, P.E.; Perrin, D.; Berger, M.O. Automatic extraction of the mitral valve chordae geometry for biomechanical simulation. Int. J. Comput. Assist. Radiol Surg. 2021, 16, 709–720. [Google Scholar] [CrossRef]
- Marom, G.; Plitman Mayo, R.; Again, N.; Raanani, E. Numerical biomechanics models of the interaction between a novel transcatheter mitral valve device and the subvalvular apparatus. Innovations 2021, 1556984521999362, Online ahead of print. [Google Scholar]
- Chen, S.; Sari, C.R.; Gao, H.; Lei, Y.; Segers, P.; De Beule, M.; Wang, G.; Ma, X. Mechanical and morphometric study of mitral valve chordae tendineae and related papillary muscle. J. Mech. Behav. Biomed. Mater. 2020, 111, 104011. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.D.; McQueen, D.M.; Peskin, C.S. Modeling the mitral valve. Int. J. Numer. Method. Biomed. Eng. 2019, 35, e3240. [Google Scholar] [CrossRef]
- Paulsen, M.J.; Imbrie-Moore, A.M.; Wang, H.; Bae, J.H.; Hironaka, C.E.; Farry, J.M.; Lucian, H.J.; Thakore, A.D.; MacArthur, J.W.; Cutkosky, M.R.; et al. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator. Eur. J. Cardiothorac. Surg. 2020, 57, 535–544. [Google Scholar] [CrossRef]
- Ross, C.J.; Laurence, D.W.; Hsu, M.C.; Baumwart, R.; Zhao, Y.D.; Mir, A.; Burkhart, H.M.; Holzapfel, G.A.; Wu, Y.; Lee, C.H. Mechanics of porcine heart valves’ strut chordae tendineae investigated as a leaflet-chordae-papillary muscle entity. Ann. Biomed. Eng. 2020, 48, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, T.; Cao, X.; Cai, L. The geometric model of the human mitral valve. PLoS ONE 2017, 12, e0183362. [Google Scholar] [CrossRef]
- Meschini, V.; de Tullio, M.D.; Verzicco, R. Effects of mitral chordae tendineae on the flow in the left heart ventricle. Eur. Phys. J. E Soft Matter 2018, 41, 27. [Google Scholar] [CrossRef]
- Papolla, C.; Darwish, A.; Kadem, L.; Rieu, R. Impact of mitral regurgitation on the flow in a model of a left ventricle. Cardiovasc. Eng. Technol. 2020, 11, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Einstein, D.R.; Bloodworth, C.H.t.; Cochran, R.P.; Yoganathan, A.P.; Kunzelman, K.S. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3d chordal structure. Int. J. Numer. Method. Biomed. Eng. 2017, 33, e2815. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; McPherson, D.D.; Kim, H. Biomechanical evaluation of the pathophysiologic developmental mechanisms of mitral valve prolapse: Effect of valvular morphologic alteration. Med. Biol. Eng. Comput. 2016, 54, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.; McPherson, D.D.; Kim, H. Neochordoplasty versus leaflet resection for ruptured mitral chordae treatment: Virtual mitral valve repair. Comput. Biol. Med. 2017, 90, 50–58. [Google Scholar] [CrossRef]
- Choi, A.; McPherson, D.D.; Kim, H. Computational virtual evaluation of the effect of annuloplasty ring shape. Int. J. Numer. Method. Biomed. Eng. 2017, 33, e2831. [Google Scholar] [CrossRef] [PubMed]
- Rim, Y.; Chandran, K.B.; Laing, S.T.; Kee, P.; McPherson, D.D.; Kim, H. Can computational simulation quantitatively determine mitral valve abnormalities? JACC Cardiovasc. Imaging 2015, 8, 1112–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, Y.; Choi, A.; Laing, S.T.; McPherson, D.D.; Kim, H. Three-dimensional echocardiography-based prediction of posterior leaflet resection. Echocardiography 2014, 31, E300–E303. [Google Scholar] [CrossRef] [Green Version]
- Rim, Y.; Laing, S.T.; Kee, P.; McPherson, D.D.; Kim, H. Evaluation of mitral valve dynamics. JACC Cardiovasc. Imaging 2013, 6, 263–268. [Google Scholar] [CrossRef]
- Rim, Y.; McPherson, D.D.; Chandran, K.B.; Kim, H. The effect of patient-specific annular motion on dynamic simulation of mitral valve function. J. Biomech. 2013, 46, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, Y.; Choi, A.; McPherson, D.D.; Kim, H. Personalized computational modeling of mitral valve prolapse: Virtual leaflet resection. PLoS ONE 2015, 10, e0130906. [Google Scholar] [CrossRef] [PubMed]
- Sonne, C.; Sugeng, L.; Watanabe, N.; Weinert, L.; Saito, K.; Tsukiji, M.; Yoshida, K.; Takeuchi, M.; Mor-Avi, V.; Lang, R.M. Age and body surface area dependency of mitral valve and papillary apparatus parameters: Assessment by real-time three-dimensional echocardiography. Eur. J. Echocardiogr. 2009, 10, 287–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, J.H.; Ranganathan, N.; Wigle, E.D.; Silver, M.D. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 1970, 41, 449–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.M.; Kim, J.J.; Ha, T.Y.; Lee, J.W.; Jung, S.H.; Hwang, I.S.; Lee, I.; Sun, B.J.; Kim, D.H.; Kang, D.H.; et al. Basal chordae sites on the mitral valve determine the severity of secondary mitral regurgitation. Heart 2015, 101, 1024–1031. [Google Scholar] [CrossRef]
- Prot, V.; Skallerud, B.; Sommer, G.; Holzapfel, G.A. On modelling and analysis of healthy and pathological human mitral valves: Two case studies. J. Mech. Behav. Biomed. Mater. 2010, 3, 167–177. [Google Scholar] [CrossRef]
- May-Newman, K.; Yin, F.C. A constitutive law for mitral valve tissue. J. Biomech. Eng. 1998, 120, 38–47. [Google Scholar] [CrossRef]
- May-Newman, K.; Yin, F.C. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 1995, 269, H1319–H1327. [Google Scholar] [CrossRef]
- Mitchell, J.R.; Wang, J.J. Expanding application of the wiggers diagram to teach cardiovascular physiology. Adv. Physiol. Educ. 2014, 38, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Stevanella, M.; Votta, E.; Redaelli, A. Mitral valve finite element modeling: Implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. 2009, 131, 121010. [Google Scholar] [CrossRef]
- Khalighi, A.H.; Drach, A.; Bloodworth, C.H.; Pierce, E.L.; Yoganathan, A.P.; Gorman, R.C.; Gorman, J.H., 3rd; Sacks, M.S. Mitral valve chordae tendineae: Topological and geometrical characterization. Ann. Biomed. Eng. 2017, 45, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Sacks, M.; Drach, A.; Lee, C.H.; Khalighi, A.; Rego, B.; Zhang, W.; Ayoub, S.; Yoganathan, A.; Gorman, R.C.; Gorman Iii, J.H. On the simulation of mitral valve function in health, disease, and treatment. J. Biomech. Eng. 2019, 141, 0708041. [Google Scholar] [CrossRef] [PubMed]
- Zuo, K.; Pham, T.; Li, K.; Martin, C.; He, Z.; Sun, W. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae. J. Mech. Behav. Biomed. Mater. 2016, 62, 607–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, W.; Jeong, S.; Ko, M.; Kim, H.H.; Kim, H. Effect of the Location of Strut Chordae Insertion on Computational Modeling and Biomechanical Evaluation of Mitral Valve Dynamics. Appl. Sci. 2021, 11, 6205. https://doi.org/10.3390/app11136205
Hong W, Jeong S, Ko M, Kim HH, Kim H. Effect of the Location of Strut Chordae Insertion on Computational Modeling and Biomechanical Evaluation of Mitral Valve Dynamics. Applied Sciences. 2021; 11(13):6205. https://doi.org/10.3390/app11136205
Chicago/Turabian StyleHong, Woojae, Soohwan Jeong, Minsung Ko, Hyun Hak Kim, and Hyunggun Kim. 2021. "Effect of the Location of Strut Chordae Insertion on Computational Modeling and Biomechanical Evaluation of Mitral Valve Dynamics" Applied Sciences 11, no. 13: 6205. https://doi.org/10.3390/app11136205
APA StyleHong, W., Jeong, S., Ko, M., Kim, H. H., & Kim, H. (2021). Effect of the Location of Strut Chordae Insertion on Computational Modeling and Biomechanical Evaluation of Mitral Valve Dynamics. Applied Sciences, 11(13), 6205. https://doi.org/10.3390/app11136205