Electromagnetic Simulations and Measurements of the K-800 Superconducting Cyclotron RF Cavity at INFN-LNS
Abstract
:1. Introduction
2. Rf Model: Simulation Results vs. Experimental Measurements
2.1. Model Geometry, Materials, Mesh, and Boundary Conditions
2.2. Eigenmode Results
2.3. Driven Results
2.4. Impedance Matching Procedure
2.5. Quality Factor
3. Analysis of Cavity Asymmetry Effects on Beam-Dynamics
Coaxial Sliding Shorts Asymmetric Position
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calabretta, L.; Cuttone, G.; Gammino, S.; Gmaj, P.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelll, A.; Sura, J.; Amato, A.; et al. Commissioning of the K800 INFN Cyclotron. In Proceedings of the 14th International Conference on Cyclotrons and their Applications (CYCLOTRONS 95), Faure, Cape Town, Africa, 8–13 October 1995; p. A02. [Google Scholar]
- Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondì, M.; Carbone, D.; Cunsolo, A.; Foti, A. Heavy-ion double charge exchange reactions: A tool toward νββ nuclear matrix elements. Eur. Phys. J. A 2015, 51, 145. [Google Scholar] [CrossRef] [Green Version]
- Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Presti, D.L.; Oliveira, J.R.B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; et al. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay. Eur. Phys. J. A 2018, 54, 72. [Google Scholar] [CrossRef] [Green Version]
- Calanna, A.; Calabretta, L.; Rifuggiato, D.; Cuttone, G.; D’Agostino, G.; Russo, A.D.; Radovinsky, A. Proposal to Increase the Extracted Beam Power from the LNS-INFN Superconducting Cyclotron. In Proceedings of the of HIAT2015, Yokohama, Japan, 7–11 September 2015. [Google Scholar]
- Calabretta, L.; Calanna, A.; Cuttone, G.; D’Agostino, G.; Rifuggiato, D.; Russo, A.D. Upgrade of the LNS Superconducting Cyclotron for Beam Power Higher than 2–5 kW. In Proceedings of the Cyclotrons2016, Zurich, Switzerland, 11–16 September 2016. [Google Scholar]
- Calanna, A. High-intensity extraction from the Superconducting Cyclotron at LNS-INFN. Nuovo Cimento C Geophys. Space Phys. C 2017, 40, 101. [Google Scholar] [CrossRef]
- Gallo, G.; Costa, G.; Allegra, L.; Calabretta, L.; Messina, G.; Musumeci, M.; Rifuggiato, D.; Zappalà, E. Mechanical modifications of the median plane for the Superconducting Cyclotron Upgrade. In Proceedings of the International Conference on Cyclotrons and their applications: CYC2019, Cape Town, Africa, 22–27 September 2019. [Google Scholar]
- Caruso, A. The RF System of the K-800 Superconductiong Cyclotron at INFN-LNS. In Proceedings of the Indian Particle Accelerator Conference, VECC, Kolkata, India, 19–22 November 2013. [Google Scholar]
- Caruso, A.; Caruso, F.; Longhitano, A.; Spartà, A.; Primadei, G.; Sura, J. Hybrid Configuration, Solid State-Tube, Revamps an Obsolete Tube Amplifier for the INFN K-800 Superconducting Cyclotron. In Proceedings of the 21th International Conference on Cyclotrons and their Applications (Cyclotrons’16), Zurich, Switzerland, 11 – 16 September 2016; pp. 263–326. [Google Scholar]
- Gallo, G.; Allegra, L.; Costa, G.; Messina, E.; Zappala, E. Mechanical aspects of the LNS Superconducting Cyclotron upgrade. In Proceedings of the Cyclotrons 2016, Zurich, Switzerland, 11–16 September 2016. [Google Scholar]
- Livingood, J.J. Principles of Cyclic Particle Accelerators; Van Nostrand Reinhold Inc.: Princeton, NJ, USA, 1961. [Google Scholar]
- Afzalan, V.; Afarideh, H.; Azizi, R.; Ghergherehchi, M.; Chai, J.S. Design and Simulation of Cavity for 10 MeV Compact Cyclotron. In Proceedings of the 20th Int. Conf. on Cyclotrons and their Applications (Cyclotrons13), Vancouver, BC, Canada, 16–20 September 2013. [Google Scholar]
- Mohamadian, M.; Afarideh, H.; Ghergherehchi, M.; Sabounchi, S.; Salehi, M. Equivalent Circuit Model of Cyclotron RF System. In Proceedings of the of Cyclotrons 2016, Zurich, Switzerland, 11–16 September 2016. [Google Scholar]
- Mohamadian, M.; Afarideh, H.; Ghergherehchi, M. Accurate Electromagnetic Simulation and Design of Cyclotron Cavity. IEEE Trans. Nucl. Sci. 2017, 64, 809–815. [Google Scholar] [CrossRef]
- Mitra, A.; Bylinski, Y.; Mehboob, N.; Poirier, R.; Zvyagintsev, V. Simulation of RF structure of TRIUMF cyclotron with HFSS. In Cyclotrons and Their Applications 2004, Proceedings of the Seventeenth International Conference, Tokyo, Japan, 18–22 October 2005; World Scientific: Singapore, 2004. [Google Scholar]
- Som, S.; Seth, S.; Mandal, A.; Paul, S.; Duttagupta, A. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata. Rev. Sci. Instrum. 2013, 84, 023303. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ghergherehchi, M.; wook Shin, S.; Kim, H.; Ha, D.; Namgoong, H.; Song, H.S.; Chai, J.S. Design of 83.2 MHz RF cavity for SKKUCY-10 cyclotron. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 939, 66–73. [Google Scholar] [CrossRef]
- RF Module Users Guide; COMSOL 5.4; COMSOL AB: Stockholm, Sweden, 2018; p. 121.
- CST-Computer Simulation Technology 2021; Dassault Systemes: Veelizy-Villacoublay, France, 2021.
- Pagani, C.; Alessandria, F.; Varisco, G.; Venturini, V. RF System Design of the Milan Superconducting Cyclotron. In Proceedings of the 9th International Conference on Cyclotrons and their Applications, Caen, France, 7–10 September 1981; p. EP14. [Google Scholar]
- Pagani, C. RF System of the Milan K800 Cyclotron. In Proceedings of the 10th International Conference on Cyclotrons and their Applications, East Lansing, MI, USA, 30 April–3 May 1984; p. H03. [Google Scholar]
- Ji, B.; Yin, Z.; Zhang, T.; Xing, J.; Zhao, Z.; Lin, J.; Zheng, X.; Li, P.; Liu, G.; Wang, Z.; et al. Design and Primary Test of full scale Cavity of CYCIAE-100. In Proceedings of the Cyclotrons 2010, Lanzhou, China, 6–10 September 2010. [Google Scholar]
- Shi, J.; Chen, H.; Zheng, S.; Li, D.; Rimmer, R.; Wang, H. Comparison of Measured and Calculated Coupling between a Waveguide and an RF Cavity Using CST Microwave Studio. Conf. Proc. C 2006, 060626, 1328–1330. [Google Scholar]
- Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R. A Comprehensive Comparison of Relativistic Particle Integrators. Astrophys. J. Suppl. Ser. 2018, 235, 21. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrisi, G.; Mauro, G.S.; Neri, L.; Allegra, L.; Caruso, A.; Gallo, G.; Longhitano, A.; Maggiore, M.; Rifuggiato, D.; Spartà, A. Electromagnetic Simulations and Measurements of the K-800 Superconducting Cyclotron RF Cavity at INFN-LNS. Appl. Sci. 2021, 11, 5995. https://doi.org/10.3390/app11135995
Torrisi G, Mauro GS, Neri L, Allegra L, Caruso A, Gallo G, Longhitano A, Maggiore M, Rifuggiato D, Spartà A. Electromagnetic Simulations and Measurements of the K-800 Superconducting Cyclotron RF Cavity at INFN-LNS. Applied Sciences. 2021; 11(13):5995. https://doi.org/10.3390/app11135995
Chicago/Turabian StyleTorrisi, Giuseppe, Giorgio Sebastiano Mauro, Lorenzo Neri, Luciano Allegra, Antonio Caruso, Giuseppe Gallo, Alberto Longhitano, Mario Maggiore, Danilo Rifuggiato, and Antonino Spartà. 2021. "Electromagnetic Simulations and Measurements of the K-800 Superconducting Cyclotron RF Cavity at INFN-LNS" Applied Sciences 11, no. 13: 5995. https://doi.org/10.3390/app11135995
APA StyleTorrisi, G., Mauro, G. S., Neri, L., Allegra, L., Caruso, A., Gallo, G., Longhitano, A., Maggiore, M., Rifuggiato, D., & Spartà, A. (2021). Electromagnetic Simulations and Measurements of the K-800 Superconducting Cyclotron RF Cavity at INFN-LNS. Applied Sciences, 11(13), 5995. https://doi.org/10.3390/app11135995