Soft Jumping Robot Using Soft Morphing and the Yield Point of Magnetic Force
Abstract
:1. Introduction
2. Fabrication of Polymer Structures and Formation of Residual Stresses
2.1. Soft Morphing
2.2. Residual Stresses
3. Fabrication of Deformation Structures Caused by Residual Stresses
4. Deformation of Soft Morphing Structures According to the Conditions of Lower Polymer
5. Soft Jumping Mechanism Using Magnetic Force
5.1. Pneumatic Drive Fabrication
5.2. Polymer Freedom Agent Using Fabric Material
5.3. Energy Storage Using Magnetism
5.4. Emission of Energy Using Magnetic Yield Points
6. Soft Jumping Robot Fabrication Using Magnetic Surrender
6.1. Shape Regulation through Residual Stress Control by Site
6.2. Drive Stabilization of the Soft Robot
7. Drive Test of Soft Robot
7.1. Performance Verification of the Soft Jumping Robots
7.2. Driving Tests under a Variety of Environments
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bledt, G.; Powell, M.J.; Katz, B.; Carlo, J.D.; Wensing, P.M.; Kim, S. MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2245–2252. [Google Scholar]
- Wooden, D.; Malchano, M.; Blankespoor, K.; Howardy, A.; Rizzi, A.A.; Raibert, M. Autonomous Navigation for BigDog. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 4736–4741. [Google Scholar]
- Han, M.-W.; Kim, M.-S.; Ahn, S.-H. Shape Memory Textile Composites with Multi-Mode Actuations for Soft Morphing Skins. Compos. Part B Eng. 2020, 198, 108170. [Google Scholar] [CrossRef]
- Umedachi, T.; Vikas, V.; Trimmer, B.A. Softworms: The Design and Control of Non-Pneumatic, 3D-Printed, Deformable Robots. Bioinspir. Biomim. 2016, 11, 025001. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Hingorani, H.; Ding, N.; Wang, D.; Yuan, C.; Zhang, B.; Gu, G.; Ge, Q. Fast-Response, Stiffness-Tunable Soft Actuator by Hybrid Multimaterial 3D Printing. Adv. Funct. Mater. 2019, 29, 1806698. [Google Scholar] [CrossRef]
- Liu, Y.; Shaw, B.; Dickey, M.D.; Genzer, J. Sequential Self-Folding of Polymer Sheets. Sci. Adv. 2017, 3, e1602417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-I.; Han, M.-W.; Song, S.-H.; Ahn, S.-H. Soft Morphing Hand Driven by SMA Tendon Wire. Compos. Part B Eng. 2016, 105, 138–148. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Stokes, A.A.; Freake, J.; Barber, J.; Snyder, P.W.; Mazzeo, A.D.; Cademartiri, L.; Morin, S.A.; Whitesides, G.M. Using Explosions to Power a Soft Robot. Angew. Chem. Int. Ed. 2013, 52, 2892–2896. [Google Scholar] [CrossRef] [PubMed]
- Tolley, M.T.; Shepherd, R.F.; Karpelson, M.; Bartlett, N.W.; Galloway, K.C.; Wehner, M.; Nunes, R.; Whitesides, G.M.; Wood, R.J. An Untethered Jumping Soft Robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 561–566. [Google Scholar]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chang, L.; Pérez-Arancibia, N.O. An 88-Milligram Insect-Scale Autonomous Crawling Robot Driven by a Catalytic Artificial Muscle. Sci. Robot. 2020, 5, eaba0015. [Google Scholar] [CrossRef]
- Jung, G.; Casarez, C.S.; Jung, S.; Fearing, R.S.; Cho, K. An Integrated Jumping-Crawling Robot Using Height-Adjustable Jumping Module. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4680–4685. [Google Scholar]
- Haldane, D.W.; Plecnik, M.; Yim, J.K.; Fearing, R.S. A Power Modulating Leg Mechanism for Monopedal Hopping. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4757–4764. [Google Scholar]
- Woodward, M.A.; Sitti, M. MultiMo-Bat: A Biologically Inspired Integrated Jumping–Gliding Robot. Int. J. Robot. Res. 2014, 33, 1511–1529. [Google Scholar] [CrossRef]
- Jiang, F.; Zhao, J.; Kota, A.K.; Xi, N.; Mutka, M.W.; Xiao, L. A Miniature Water Surface Jumping Robot. IEEE Robot. Autom. Lett. 2017, 2, 1272–1279. [Google Scholar] [CrossRef]
- Kenneally, G.; De, A.; Koditschek, D.E. Design Principles for a Family of Direct-Drive Legged Robots. IEEE Robot. Autom. Lett. 2016, 1, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Noh, M.; Kim, S.; An, S.; Koh, J.; Cho, K. Flea-Inspired Catapult Mechanism for Miniature Jumping Robots. IEEE Trans. Robot. 2012, 28, 1007–1018. [Google Scholar] [CrossRef]
- Tang, Y.; Chi, Y.; Sun, J.; Huang, T.-H.; Maghsoudi, O.H.; Spence, A.; Zhao, J.; Su, H.; Yin, J. Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots. Sci. Adv. 2020, 6, eaaz6912. [Google Scholar] [CrossRef]
- Liu, G.-H.; Lin, H.-Y.; Lin, H.-Y.; Chen, S.-T.; Lin, P.-C. A Bio-Inspired Hopping Kangaroo Robot with an Active Tail. J. Bionic. Eng. 2014, 11, 541–555. [Google Scholar] [CrossRef]
- Zaitsev, V.; Gvirsman, O.; Ben Hanan, U.; Weiss, A.; Ayali, A.; Kosa, G. A Locust-Inspired Miniature Jumping Robot. Bioinspir. Biomim. 2015, 10, 066012. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zang, X.; Fan, J.; Zhao, J. Biological Jumping Mechanism Analysis and Modeling for Frog Robot. J. Bionic Eng. 2008, 5, 181–188. [Google Scholar] [CrossRef]
- Ache, J.M.; Matheson, T. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity. Curr. Biol. 2013, 23, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.-M.; Yim, S.; Chae, S.-H.; Lee, D.-Y.; Cho, K.-J. Ladybird Beetle—Inspired Compliant Origami. Sci. Robot. 2020, 5, eaaz6262. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Majidi, C.; Srolovitz, D.J.; Haataja, M. Tunable Helical Ribbons. Appl. Phys. Lett. 2011, 98, 011906. [Google Scholar] [CrossRef] [Green Version]
- Han, M.-W.; Ahn, S.-H. Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics. Adv. Mater. 2017, 29, 1606580. [Google Scholar] [CrossRef] [PubMed]
- Franinović, K.; Franzke, L. Shape Changing Surfaces and Structures: Design Tools and Methods for Electroactive Polymers. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Kim, S.; Koh, J.; Cho, M.; Cho, K. Towards a Bio-Mimetic Flytrap Robot Based on a Snap-through Mechanism. In Proceedings of the 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26–29 September 2010; pp. 534–539. [Google Scholar]
- Shahinpoor, M. Biomimetic Robotic Venus Flytrap (Dionaea Muscipula Ellis) Made with Ionic Polymer Metal Composites. Bioinspir. Biomim. 2011, 6, 046004. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.F.; Ilievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. Multigait Soft Robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokoun, D.; Beleggia, M.; Heller, L.; Šittner, P. Magnetostatic Interactions and Forces between Cylindrical Permanent Magnets. J. Magn. Magn. Mater. 2009, 321, 3758–3763. [Google Scholar] [CrossRef]
Material | Percent (%) |
---|---|
Main material A | 49.5 |
Sub material B | 49.5 |
Cure accelerator | 1 |
Material | EcoFlex0050 | EcoFlex0030 | Dragon Skin Fx Pro | |
---|---|---|---|---|
Properties | ||||
Shore hardness | 00–50 | 00–30 | 2 | |
Mixed viscosity | 8000 cps | 3000 cps | 18,000 cps | |
Tensile strength | 315 psi | 200 psi | 288 psi | |
Elongation at break | 980% | 900% | 763% |
Magnet Size (m) (Length × Width × Thickness) | Amount of Air | Air Injecting Speed |
---|---|---|
0.01 × 0.02 × 0.003 | 0.04 L | 0.0124 L/s |
Magnet Size (m) (Length × Width × Thickness) | Amount of Air | Air Injecting Speed |
---|---|---|
0.01 × 0.02 × 0.003 0.01 × 0.015 × 0.003 | 0.04 L | 0.0124 L/s |
Magnet Size (m) (Length × Width × Thickness) | Amount of Air | Air Injecting Speed |
---|---|---|
0.01 × 0.02 × 0.003 | 0.035 L 0.04 L | 0.0124 L/s |
Magnet Size (m) (Length × Width × Thickness) | Amount of Air | Air Injecting Speed |
---|---|---|
0.01 × 0.02 × 0.003 | 0.040 L | 0.0124 L/s 0.025 L/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, G.-H.; Park, Y.-J. Soft Jumping Robot Using Soft Morphing and the Yield Point of Magnetic Force. Appl. Sci. 2021, 11, 5891. https://doi.org/10.3390/app11135891
Jeon G-H, Park Y-J. Soft Jumping Robot Using Soft Morphing and the Yield Point of Magnetic Force. Applied Sciences. 2021; 11(13):5891. https://doi.org/10.3390/app11135891
Chicago/Turabian StyleJeon, Gang-Hyun, and Yong-Jai Park. 2021. "Soft Jumping Robot Using Soft Morphing and the Yield Point of Magnetic Force" Applied Sciences 11, no. 13: 5891. https://doi.org/10.3390/app11135891