Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Materials
2.2. Methods
2.3. Characterization of HNTs-CPTMS
3. Results and Discussion
3.1. Effect of Solvent
3.2. Effect of HNTs:CPTMS:H2O Molar Ratio
3.3. Effect of Catalyst on Silanization of HNTs Using CPTMS
3.4. Effect of Time
3.5. Effect of the Volume of Toluene
3.6. Characterization of the Sample Which Has the Greatest Degree of Grafting Using CPTMS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals–a review. Clay Min. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Osipova, V.A.; Pestov, A.V.; Mekhaev, A.V.; Abu El-Soad, A.M.; Tambasova, D.P.; Antonov, D.O.; Kovaleva, E.G. Functionalization of Halloysite by 3-Aminopropyltriethoxysilane in Various Solvents. Pet. Chem. 2020, 60, 597–600. [Google Scholar] [CrossRef]
- Szczepanik, B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl Clay Sci. 2017, 141, 227–239. [Google Scholar] [CrossRef]
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Cavallaro, G.; Chiappisi, L.; Pasbakhsh, P.; Gradzielski, M.; Lazzara, G. A structural comparison of halloysite nanotubes of different origin by Small-Angle Neutron Scattering (SANS, and Electric Birefringence. Appl. Clay Sci. 2018, 160, 71–80. [Google Scholar] [CrossRef]
- Pasbakhsh, P.; Churchman, G.J.; Keeling, J.L. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 2013, 74, 47–57. [Google Scholar] [CrossRef]
- Sadjadi, S. Halloysite-based hybrids/composites in catalysis. Appl. Clay Sci. 2020, 189, 105537. [Google Scholar] [CrossRef]
- Bertolino, V.; Cavallaro, G.; Milioto, S.; Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym. 2020, 245, 116502. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. [Google Scholar] [CrossRef]
- Lvov, Y.; Panchal, A.; Fu, Y.; Fakhrullin, R.; Kryuchkova, M.; Batasheva, S.; Stavitskaya, A.; Glotov, A.; Vinokurov, V. Interfacial Self-Assembly in Halloysite Nanotube Composites. Langmuir 2019, 35, 8646–8657. [Google Scholar] [CrossRef]
- Lvov, Y.M.; DeVilliers, M.M.; Fakhrullin, R.F. The application of halloysite tubule nanoclay in drug delivery. Expert Opin. Drug Deliv. 2016, 13, 977–986. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Parisi, F.; Lazzara, G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS Appl. Mater. Interfaces 2018, 10, 27355–27364. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Hueckel, T.; Cavallaro, G.; Sacanna, S.; Lazzara, G. Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS Appl. Mater. Interfaces 2021, 13, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, X.; Zhou, W.Y.; Lei, Y.; Jia, D. Adsorption of ionic liquid onto halloysite nanotubes: Mechanism and reinforcement of the modified clay to rubber. J. Macromol. Sci. Part B 2010, 49, 1029–1043. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Hao, W.; Du, Y.; Pan, C. Structure and properties research on montmorillonite modified by flame-retardant dendrimer. Appl. Clay Sci. 2014, 90, 109–121. [Google Scholar] [CrossRef]
- Liu, M.; Wu, C.; Jiao, Y.; Xiong, S.; Zhou, C. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J. Mater. Chem. B 2013, 1, 2078–2089. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef]
- El-Soad, A.M.A.; Abd El-Magied, M.O.; Atrees, M.S.; Kovaleva, E.G.; Lazzara, G. Synthesis and characterization of modified sulfonated chitosan for beryllium recovery. Int. J. Biol. Macromol. 2019, 139, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Haijiao, K.; Xiaorong, L.; Shifeng, Z.; Jianzhang, L. Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv. 2017, 7, 24140–24148. [Google Scholar]
- Lisuzzo, L.; Caruso, M.R.; Cavallaro, G.; Milioto, S.; Lazzara, G. Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres. Ind. Eng. Chem. Res. 2021, 60, 1656–1665. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Effects of Halloysite Content on the Thermo-Mechanical Performances of Composite Bioplastics. Appl. Clay Sci. 2020, 185, 105416. [Google Scholar] [CrossRef] [Green Version]
- Govindasamy, K.; Dahlan, N.A.; Janarthanan, P.; Goh, K.L.; Chai, S.-P.; Pasbakhsh, P. Electrospun Chitosan/Polyethylene-Oxide (PEO)/Halloysites (HAL) Membranes for Bone Regeneration Applications. Appl. Clay Sci. 2020, 190, 105601. [Google Scholar] [CrossRef]
- Gorrasi, G.; Bugatti, V.; Ussia, M.; Mendichi, R.; Zampino, D.; Puglisi, C.; Carroccio, S.C. Halloysite Nanotubes and Thymol as Photo Protectors of Biobased Polyamide 11. Polym. Degrad. Stab. 2018, 152, 43–51. [Google Scholar] [CrossRef]
- Abu El-Soad, A.M.; Pestov, A.V.; Tambasova, D.P.; Osipova, V.A.; Martemyanov, N.A.; Cavallaro, G.; Kovaleva, E.G.; Lazzara, G. Insights into grafting of (3-Mercaptopropyl) trimethoxy silane on halloysite nanotubes surface. J. Organomet. Chem. 2020, 915, 121224. [Google Scholar] [CrossRef]
- Abu El-Soad, A.M.; Lazzara, G.; Pestov, A.V.; Cavallaro, G.; Martemyanov, N.A.; Kovaleva, E.G. Effect of Polarity of Solvent on Silanization of Halloysite Nanoclay Using (3-Glycidyloxy propyl, Trimethoxy Silane. J. Inorg. Organomet. Polym. Mater. 2021, 31, 2569–2578. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Iacob, C.; Nechifor, G.; Niculescu, V.-C. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix. Front. Chem. 2019, 7, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niculescu, V.; Miricioiu, M.; Geana, E.-I.; Ionete, R.-E.; Paun, N.; Parvulescu, V. Silica Mesoporous Materials—An Efficient Sorbent for Wine Polyphenols Separation. Rev. Chim. 2019, 70, 1513–1517. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Tosto, C.; Bottino, F.A. Kinetic Study of the Thermal and Thermo-Oxidative Degradations of Polystyrene Reinforced with Multiple-Cages POSS. Polymers 2020, 12, 2742. [Google Scholar] [CrossRef]
- Gauthier, S.; Aimé, J.P.; Bouhacina, T.; Attias, A.J.; Desbat, B. Study of Grafted Silane Molecules on Silica Surface with an Atomic Force Microscope. Langmuir 1996, 12, 5126–5137. [Google Scholar] [CrossRef]
- Pereira, C.; Patrício, S.; Silva, A.R.; Magalhães, A.L.; Carvalho, A.P.; Pires, J.; Freire, C. Copper acetylacetonate anchored onto amine-functionalised clays. J. Colloid Interface Sci. 2007, 316, 570–579. [Google Scholar] [CrossRef]
- Xue, A.; Zhou, S.; Zhao, Y.; Lu, X.; Han, P. Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes. J. Hazard. Mater. 2011, 194, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Javadian, H.; Koutenaei, B.B.; Shekarian, E.; Sorkhrodi, F.Z.; Khatti, R.; Toosi, M. Application of functionalized nano HMS type mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II) from aqueous media and industrial wastewater. J. Saudi Chem. Soc. 2017, 21, S219–S230. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yu, C.; Zhao, W.; Hua, Z.; Chen, H.; Li, L.; Shi, J. Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. J. Non-Cryst. Solids. 2007, 353, 4055–4061. [Google Scholar] [CrossRef]
- Hernández-Morales, V.; Nava, R.; Acosta-Silva, Y.J.; MacÍas-Sánchez, S.A.; Pérez-Bueno, J.J.; Pawelec, B. Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with -NH 2 groups. Microporous Mesoporous Mater. 2012, 160, 133–142. [Google Scholar] [CrossRef]
- Carli, L.N.; Daitx, T.S.; Soares, G.V.; Crespo, J.S.; Mauler, R.S. The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Appl. Clay Sci. 2014, 87, 311–319. [Google Scholar] [CrossRef]
- Yuan, P.; Southon, P.D.; Liu, Z.; Green, M.E.R.; Hook, J.M.; Antill, S.J.; Kepert, C.J. Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742–15751. [Google Scholar] [CrossRef]
- Duce, C.; Ciprioti, S.V.; Ghezzi, L.; Ierardi, V.; Tinè, M. Thermal Behavior Study of Pristine and Modified Halloysite Nanotubes. J. Therm. Anal. Calorim. 2015, 121, 1011–1019. [Google Scholar] [CrossRef]
Molar Ratio (HNTs/CPTMS/ H2O) | Solvent | Catalyst | T/°C | Refluxing Time (h) | Content, % | Degree of Grafting (%) | |
---|---|---|---|---|---|---|---|
С | H | ||||||
1:1:0 | 20 mL toluene | 110 | 4 | 2.17 | 1.83 | 24.29 | |
1:1.33:0 | 20 mL THF | 66 | 4 | 1.20 | 1.63 | 11 | |
1:1:3 | 20 mL toluene | 110 | 4 | 3.26 | 2.22 | 36.5 | |
1:1:0 | 20 mL ethanol | 79 | 4 | 0.96 | 1.53 | 10.75 | |
1:1.33:0 | 5 mL toluene | 110 | 4 | 1.40 | 1.90 | 12.84 | |
1:1:0 | 20 mL toluene | 110 | 35 | 2.01 | 1.86 | 22.5 | |
1:1:0 | 20 mL toluene | 110 | 48 | 1.89 | 1.97 | 21.16 | |
1:2:0 | 20 mL toluene | 110 | 4 | 2.41 | 2.03 | 17.13 | |
1:2:0 | 17 mL toluene | 110 | 48 | 2.98 | 1.95 | 21.19 | |
1:1:3 | 20 mL toluene | 0.5 mL Et3N | 110 | 7 | 4.31 | 2.85 | 48.26 |
1:1:3 | 20 mL toluene | 0.2 g urea | 110 | 4 | 6.63 | 2.97 | 27.77 |
1:1.33:0 | 20 mL n-hexane | 1 mL Et3N | 69 | 4 | 3.69 | 2.14 | 33.83 |
1:1.33:0 | 20 mL 1,4 dioxane | 1 mL Et3N | 100 | 4 | 2.655 | 2.175 | 24.34 |
1:1.33:0 | 20 mL n-hexane | 69 | 4 | 1.67 | 1.96 | 15.320 | |
1:1.33:0 | 20 mL 1,4 dioxane | 100 | 4 | 1.56 | 1.86 | 14.3 | |
1:1:3 | 20 mL toluene | 0.5 mL Et3N | 110 | 4 | 4.84 | 2.22 | 54.19 |
1:1:3 | 40 mL toluene | 0.5 mL Et3N | 110 | 4 | 4.55 | 2.13 | 50.95 |
1:1:3 | 20 mL toluene | 0.5 mL Et3N + 0.5 mL NH4OH | 110 | 4 | 7.26 | 2.55 | 81.35 |
1:1:0 | 20 mL toluene | 3drops (EtO)4Ti | 110 | 4 | 3.17 | 2.1 | 35.49 |
1:1:3 | 20 mL toluene | 0.5 mL Et3N + 0.138 mL NH4OH | 110 | 4 | 4.52 | 2.24 | 50.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu El-Soad, A.M.; Lazzara, G.; Pestov, A.V.; Tambasova, D.P.; Antonov, D.O.; Cavallaro, G.; Kovaleva, E.G. Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface. Appl. Sci. 2021, 11, 5534. https://doi.org/10.3390/app11125534
Abu El-Soad AM, Lazzara G, Pestov AV, Tambasova DP, Antonov DO, Cavallaro G, Kovaleva EG. Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface. Applied Sciences. 2021; 11(12):5534. https://doi.org/10.3390/app11125534
Chicago/Turabian StyleAbu El-Soad, Asmaa M., Giuseppe Lazzara, Alexander V. Pestov, Daria P. Tambasova, Denis O. Antonov, Giuseppe Cavallaro, and Elena G. Kovaleva. 2021. "Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface" Applied Sciences 11, no. 12: 5534. https://doi.org/10.3390/app11125534
APA StyleAbu El-Soad, A. M., Lazzara, G., Pestov, A. V., Tambasova, D. P., Antonov, D. O., Cavallaro, G., & Kovaleva, E. G. (2021). Grafting of (3-Chloropropyl)-Trimethoxy Silane on Halloysite Nanotubes Surface. Applied Sciences, 11(12), 5534. https://doi.org/10.3390/app11125534