In-Band Pumped Thulium-Doped Tellurite Glass Microsphere Laser
Abstract
:1. Introduction
2. Theoretical Model
3. Theoretical Results and Discussion
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pasquazi, A.; Peccianti, M.; Razzari, L.; Moss, D.J.; Coen, S.; Erkintalo, M.; Chembo, Y.K.; Hansson, T.; Wabnitz, S.; Del’Haye, P.; et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 2018, 729, 1–81. [Google Scholar] [CrossRef]
- Yu, M.; Okawachi, Y.; Griffith, A.G.; Picqué, N.; Lipson, M.; Gaeta, A.L. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Voloshin, A.S.; Kondratiev, N.M.; Lihachev, G.V.; Liu, J.; Lobanov, V.E.; Dmitriev, N.Y.; Weng, W.; Kippenberg, T.J.; Bilenko, I.A. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 2021, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Suh, M.G.; Yi, X.; Lai, Y.H.; Leifer, S.; Grudinin, I.S.; Vasisht, G.; Martin, E.C.; Fitzgerald, M.P.; Doppmann, G.; Wang, J.; et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics 2019, 13, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeifle, J.; Brasch, V.; Lauermann, M.; Yu, Y.; Wegner, D.; Herr, T.; Hartinger, K.; Schindler, P.; Li, J.; Hillerkusset, D.; et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 2014, 8, 375–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Silver, J.M.; Shang, X.; Del Bino, L.; Ridler, N.M.; Del’Haye, P. Terahertz wave generation using a soliton microcomb. Opt. Express 2019, 27, 35257–35266. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Marisova, M.P.; Andrianov, A.V.; Akhmedzhanov, R.A.; Murnieks, R.; Tokman, M.D.; Skladova, L.; Oladyshkin, I.V.; Salgals, T.; Lyashuk, I.; et al. Microsphere-Based Optical Frequency Comb Generator for 200 GHz Spaced WDM Data Transmission System. Photonics 2020, 7, 72. [Google Scholar] [CrossRef]
- Salgals, T.; Alnis, J.; Murnieks, R.; Brice, I.; Porins, J.; Andrianov, A.V.; Anashkina, E.A.; Spolitis, S.; Bobrovs, V. Demonstration of a fiber optical communication system employing a silica microsphere-based OFC source. Opt. Express 2021, 29, 10903–10913. [Google Scholar] [CrossRef] [PubMed]
- Braunfelds, J.; Murnieks, R.; Salgals, T.; Brice, I.; Sharashidze, T.; Lyashuk, I.; Ostrovskis, A.; Spolitis, S.; Alnis, J.; Porins, J.; et al. Frequency comb generation in WGM microsphere based generators for telecommunication applications. Quantum Electron. 2020, 50, 1043–1049. [Google Scholar] [CrossRef]
- Reynolds, T.; Riesen, N.; Meldrum, A.; Fan, X.; Hall, J.M.; Monro, T.M.; François, A. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev. 2017, 11, 1600265. [Google Scholar] [CrossRef]
- He, L.; Özdemir, Ş.K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2013, 7, 60–82. [Google Scholar] [CrossRef]
- Soria, S.; Berneschi, S.; Brenci, M.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G.C. Optical Microspherical Resonators for Biomedical Sensing. Sensors 2011, 11, 785–805. [Google Scholar] [CrossRef] [PubMed]
- Toropov, N.; Cabello, G.; Serrano, M.P.; Gutha, R.R.; Rafti, M.; Vollmer, F. Review of biosensing with whispering-gallery mode lasers. Light Sci. Appl. 2021, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Reinis, P.K.; Milgrave, L.; Draguns, K.; Brice, I.; Alnis, J.; Atvars, A. High-Sensitivity Whispering Gallery Mode Humidity Sensor Based on Glycerol Microdroplet Volumetric Expansion. Sensors 2021, 21, 1746. [Google Scholar] [CrossRef]
- Han, Z.; Fast, S.S.; Klotz, E.; Vatnik, I.D.; Churkin, D.V. Optical filtering with axial whispering gallery modes on the surface of tapered optical fibers. Laser Phys. Lett. 2020, 17, 066201. [Google Scholar] [CrossRef]
- Righini, G.C.; Dumeige, Y.; Feron, P.; Ferrari, M.; Nunzi Conti, G.; Ristic, D.; Soria, S. Whispering gallery mode microresonators: Fundamentals and applications. La Riv. Del Nuovo Cim. 2011, 34, 435–488. [Google Scholar] [CrossRef]
- Pal, A.; Chen, S.Y.; Sen, R.; Sun, T.; Grattan, K.T.V. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications. Las. Phys. Lett. 2013, 10, 085101. [Google Scholar] [CrossRef]
- Anashkina, E.A. Laser Sources Based on Rare-Earth Ion Doped Tellurite Glass Fibers and Microspheres. Fibers 2020, 8, 30. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, S.; Qua, T.; Kuwata-Gonokami, M.; Peyghambarian, N. 2 μm lasing from highly thulium doped tellurite glass microsphere. Appl. Phys. Lett. 2005, 87, 211118. [Google Scholar] [CrossRef]
- Vanier, F.; Côté, F.; El Amraoui, M.; Messaddeq, Y.; Peter, Y.A.; Rochette, M. Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 2015, 40, 5227–5230. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yi, Y.; Wang, X.; Li, A.; Jia, S.; Fan, Y.; Brambilla, G.; Wang, S.; Zhao, H. Tm3+-doped fluorotellurite glass microsphere resonator laser at 2.3 µm. Opt. Lett. 2020, 45, 3553–3556. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Li, A.Z.; Yi, Y.T.; Tokurakawa, M.; Brambilla, G.; Jia, S.J.; Wang, S.B.; Wang, P.F. A Tm3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region. J. Lumin. 2019, 212, 207–211. [Google Scholar] [CrossRef]
- Yang, K.; Dai, S.; Wu, Y.; Nie, Q. Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at 1.9 μm. Chin. Phys. B 2018, 27, 117701. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Li, W.; Zhang, M.; Zhang, J.; Tian, K.; Du, Y.; Nic Chormaic, S.; Wang, P. An experimental and theoretical investigation of a 2 μm wavelength low-threshold microsphere laser. J. Lightwave Technol. 2020, 38, 1880–1886. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Yang, K.; Xu, P.; Zhang, W.; Dai, S.; Xu, T. Fabrication and characterization of Tm3+-Ho3+ co-doped tellurite glass microsphere lasers operating at ∼2.1 μm. Opt. Mater. 2017, 72, 524–528. [Google Scholar] [CrossRef]
- Li, A.; Yu, J.; Zhang, M.; Lu, X.; Zhang, J.; Lewis, E.; Farrell, G.; Wang, P. An Yb3+-Ho3+ codoped glass microsphere laser in the 2.0 µm wavelength regions. IEEE Photonics Technol. Lett. 2018, 30, 1543–1546. [Google Scholar] [CrossRef]
- Richards, B.D.; Jha, A. Lasers utilising tellurite glass-based gain media. In Technological Advances in Tellurite Glasses; Rivera, V.A.G., Manzani, D., Eds.; Springer Series in Materials Science; Springer: Cham, Switzerland, 2017; Volume 254, pp. 101–130. [Google Scholar] [CrossRef]
- Saffari, M.; Gholami, A.; Parsanasab, G.M.; Firouzeh, Z.H. Investigation of a high-power low-threshold single-mode microsphere laser using a serially coupled double microsphere structure. J. Lightwave Technol. 2019, 37, 3273–3279. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Leuchs, G.; Andrianov, A.V. Numerical simulation of multi-color laser generation in Tm-doped tellurite microsphere at 1.9, 1.5 and 2.3 microns. Results Phys. 2020, 16, 102811. [Google Scholar] [CrossRef]
- Min, B.; Kippenberg, T.J.; Yang, L.; Vahala, K.J.; Kalkman, J.; Polman, A. Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip. Phys. Rev. A 2004, 70, 033803. [Google Scholar] [CrossRef] [Green Version]
- Mescia, L.; Bia, P.; De Sario, M.; Di Tommaso, A.; Prudenzano, F. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator. Opt. Express 2012, 20, 7616–7629. [Google Scholar] [CrossRef]
- Gomes, L.; Lousteau, J.; Milanese, D.; Scarpignato, G.C.; Jackson, S.D. Energy transfer and energy level decay processes in Tm3+-doped tellurite glass. J. Appl. Phys. 2012, 111, 063105. [Google Scholar] [CrossRef] [Green Version]
- Denker, B.I.; Dorofeev, V.V.; Galagan, B.I.; Motorin, S.E.; Sverchkov, S.E. 2.3 μm laser potential of TeO2 based glasses. Laser Phys. 2021, 27, 095801. [Google Scholar] [CrossRef]
- Muravyev, S.V.; Anashkina, E.A.; Andrianov, A.V.; Dorofeev, V.V.; Motorin, S.E.; Koptev, M.Y.; Kim, A.V. Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm. Sci. Rep. 2018, 8, 16164. [Google Scholar] [CrossRef] [PubMed]
- Svelto, O. Principles of Lasers; Springer Science + Business Media LLC: New York, NY, USA, 2010. [Google Scholar]
- Andrianov, A.V.; Marisova, M.P.; Dorofeev, V.V.; Anashkina, E.A. Thermal shift of whispering gallery modes in tellurite glass microspheres. Res. Phys. 2020, 17, 103128. [Google Scholar] [CrossRef]
- Andrianov, A.V.; Anashkina, E.A. Tunable Raman lasing in an As2S3 chalcogenide glass microsphere. Opt. Express 2021, 29, 5580–5587. [Google Scholar] [CrossRef]
- Andrianov, A.V.; Anashkina, E.A. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Res. Phys. 2020, 17, 103084. [Google Scholar] [CrossRef]
- Sasagawa, K.; Yonezawa, Z.O.; Iwai, R.; Ohta, J.; Nunoshita, M. S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process. Appl. Phys. Lett. 2004, 85, 4325–4327. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, S.; Peyghambarian, N. 1.5-μm-band thulium-doped microsphere laser originating from self-terminating transition. Opt. Express 2005, 13, 10129–10133. [Google Scholar] [CrossRef]
Thulium Ion Content | Diameter of Microsphere, μm | Pump Source; Wavelength, μm | Laser Wavelength, μm | Reference |
---|---|---|---|---|
5·1019 cm−3 | 320 | Telecommunication laser, 1.55 | ~1.9 | Present study |
4.2·1020 cm−3 (1mol% Tm2O3) | 30 | Tunable laser source, 1.504–1.629 | Centered at ~1.975 | [20] |
0.15% Tm2O3 | 104 | Ti: sapphire, 0.8 | ~1.5&1.9 | [39] |
0.5wt% Tm2O3 | Not reported | Ti: sapphire, 0.793 | ~1.5&1.9 | [40] |
5wt% | 25 | Ti: sapphire, 0.793 | ~2.0 | [19] |
1mol% Tm2O3 | ~60 | Laser diode, 0.793 | ~1.92&2.35; ~1.90 | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anashkina, E.A.; Dorofeev, V.V.; Andrianov, A.V. In-Band Pumped Thulium-Doped Tellurite Glass Microsphere Laser. Appl. Sci. 2021, 11, 5440. https://doi.org/10.3390/app11125440
Anashkina EA, Dorofeev VV, Andrianov AV. In-Band Pumped Thulium-Doped Tellurite Glass Microsphere Laser. Applied Sciences. 2021; 11(12):5440. https://doi.org/10.3390/app11125440
Chicago/Turabian StyleAnashkina, Elena A., Vitaly V. Dorofeev, and Alexey V. Andrianov. 2021. "In-Band Pumped Thulium-Doped Tellurite Glass Microsphere Laser" Applied Sciences 11, no. 12: 5440. https://doi.org/10.3390/app11125440
APA StyleAnashkina, E. A., Dorofeev, V. V., & Andrianov, A. V. (2021). In-Band Pumped Thulium-Doped Tellurite Glass Microsphere Laser. Applied Sciences, 11(12), 5440. https://doi.org/10.3390/app11125440