Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers
Abstract
:1. Introduction
1.1. Motivation and Incitement
1.2. Literature Review
1.3. Contributions and Paper Organization
- Show the structure of conventional COA and indicate its strong points and weak points. Based on found strong and weak points, good features of COA are retained, but bad features are changed by applying modifications,
- Simulate the result for the modified method and its conventional method for all study cases to indicate the impact of modifications on the performance of the proposed method,
- Provide a strong optimization approach to get good solutions for the ORPD problem. Power loss, voltage deviation, and voltage stability of the applied systems become better by the solutions provided by the proposed approach,
- The proposed method can solve the ORPD problem faster than other compared methods.
2. Optimal Reactive Power Dispatch Problem
2.1. Objective Functions
2.2. A Set of Constraints
3. The Proposed Coyote Optimization Algorithm
3.1. Original Coyote Optimization Algorithm
3.2. Improved Coyote Optimization Algorithm
3.2.1. The First Modification
- Reduce determination of Npack center solutions for Npack: The task of finding center solutions uses high simulation time, because it is comprised of many steps such as ranking each variable for the whole population and determining center variables from result of rank. The advantage is highly significant for large scale problem such as the ORPD problem due to high number of control variables and high population size.
- Many new solutions with high quality are found: The superiority can reduce the number of iterations, reducing the number of iterations, but the best optimal solution is still much more effective than that found by origin COA method.
3.2.2. The Second Modification
- 1.
- Reduce the calculation of Pro1 and Pro2.
- 2.
- Reduce two conditions: μ4 < Pro1 and μ4 < Pro1 + Pro2.
- 3.
- Reduce random generation of variable xj,r in Equation (19).
- 4.
- Shorten simulation time due to the reduction of three tasks above.
- 5.
- Npack solutions with high quality are produced: The advantages can enable to reduce the number of iterations, leading to shorter simulation time, but the best optimal solution is still much more effective than that of original COA method.
4. Solving the Typical ORPD Problem by Using the Proposed ICOA Method
4.1. Population Initialization
4.2. Processes of Newly Updated Solutions
4.3. Correction of Violation of New Solutions
4.4. Termination of Iterative Search Algorithm
4.5. The Entire Computation Procedure
5. Numerical Results
5.1. Performance Comparison Criteria for Different Methods
5.2. Testing Performance of COA and ICOA on Different Adjustment Parameters
5.3. Investigation of the Proposed Method’s Performance on the IEEE 30-Bus System
5.4. Investigation of the Proposed Method’s Performance on IEEE 57-Bus System
5.5. Investigation of the Proposed Method’s Performance on the IEEE 118-Bus System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony algorithm |
ABC-FF | ABC with firefly algorithm |
ACO | Ant Colony Optimization |
AGA | Adaptive genetic algorithm |
ALC-PSO | PSO with an aging leader and challengers |
ALO | Ant lion optimizer |
BA | Bat algorithm |
CKHA | Chaotic krill herd algorithm |
CLPSO | Comprehensive learning particle swarm optimization |
COA | Coyote optimization algorithm |
CSA | Cuckoo search algorithm |
CSOA | Crow search optimization algorithm |
DE | Differential evolution |
DE-AS | Combination of differential evolution and ant system method |
DSA | Differential search algorithm |
EMOA | Exchange market optimization algorithm |
GA | Genetic algorithm |
GBBWCA | Gaussian barebones water cycle algorithm |
GBTLBO | Gaussian barebones-based TLBO algorithm |
GSA | Gravitational search algorithm |
GWO | Gray wolf optimizer |
HFA-NMS | Hybrid Nelder–Mead simplex-based firefly algorithm |
HLGA | Hybrid loop genetic algorithm |
HMAPSO | Hybrid multiagent particle swarm optimization |
HPSO | Hybrid PSO |
HPSO-ICA | Hybrid PSO and imperialist competitive algorithms |
HPSO-TS | Hybridization of PSO and Tabu search method |
HAS | Harmony search algorithm |
IABC-DE | Incorporation of chaotic artificial bee colony algorithm and differential evolution |
ICA | Imperialist competitive algorithms |
ICBO | Improved Colliding Bodies optimization |
ICOA | Improved coyote optimization algorithm |
ICSA | Improved CSA |
JA | Jaya algorithm |
KHA | Krill herd algorithm |
MFO | Moth-flame optimization technique |
MGBTLBO | modified GBTLBO |
MOGWA | Multiobjective grey wolf algorithm |
MPSO | Modified Particle swarm optimization |
MTLA-DDE | Hybrid modified teaching learning technique and double differential evolution algorithm |
ORPD | Optimal reactive power dispatch |
PPs | Power plants |
PSO | Particle swarm optimization |
HPSO | Hybrid PSO |
PSO-AAC | PSO with adaptive acceleration coefficients |
PSO-AIW | PSO with adaptive inertia weight |
PSO-CF | PSO with constriction factor |
PSO-GT | Combination of PSO and graph theory |
PSO-IPG | PSO with pseudogradient theory and constriction factor |
PSO-PG | PSO with pseudogradient theory |
PSO-PGSWT | PSO-SWT with pseudogradient theory |
PSO-SWT | PSO with the trade-off of stochastic weight |
PST | Probabilistic state transition |
QODE | Quasi-oppositional differential evolution |
QOTLBO | Quasi-oppositional teaching learning-based optimization |
RCGA | Real coded genetic algorithm |
SARCGA | Self-adaptive real coded genetic algorithm |
SFOA | Sunflower optimization algorithm |
SGA | Specialized genetic algorithm |
SPSO-AAC | Self-adaptive PSO with adaptive acceleration coefficients |
SR | Success rate |
SSA | Salp swarm algorithm |
Std. dev. | Standard deviation |
TLBO | Teaching learning-based optimization |
TPL | Total active power losses |
TS | Tabu search method |
TVD | Total voltage deviation |
VSMF | Variable scaling mutation factor |
WCA | Water cycle algorithm |
WOA | Whale optimization algorithm |
Nomenclature | |
: | Fitness function of new solution and old solution d in the pth pack |
G | Current iteration |
Glineij, Blineij | Real element and imaginary element of admittance of branch ij |
NB | Number of all buses in considered power system |
Ncoyote | Number of coyotes in each pack |
NC | Number of shunt capacitor banks |
NG | Number of generators |
NIter | The largest iteration |
NL | Number of all loads |
Npack | Number of packs |
Npop | Number of coyotes in all packs |
Nrun | Number of runs |
Nspi | Number of new solutions produced per iteration |
Nspr | Number of new solutions produced per run |
Nsqe | Number of quality solution evaluations |
NT | Number of transformers |
PGen,i, QGen,i | Active power and reactive power generated by generator at bus i |
Pload,i, Qload,i | Active power and reactive power consumed by load at bus i |
Qcap,i | Reactive power generated by shunt capacitor banks at bus i |
Qcap,i,min, Qcap,i,max | The lowest and highest reactive power generated by shunt capacitor banks at bus i |
QGen,i,min, QGen,i,max | The lowest and highest reactive power generated by generators at bus i |
Sbranch,ij | Apparent power flow through branch ij |
Sbranch,ij,max | Apparent power flow capacity of branch ij |
Solbest,p, Solworst,p | The best solution and the worst solution in the pack p |
Solbest,r1, Solbest,r2, Solbest,r3, Solbest,r4 | The best solutions in all packs picked up randomly |
Solcenter,p | The center solution in the pack p |
Sold | The dth solution in population |
SolGbest | The best solution in the population |
The new solution in the pack p | |
Solr1,p, Solr2,p | Two randomly picked solutions in the pth pack |
TTi,min, TTi,max | The lowest and highest tap changers of transformers at bus i |
Vexpected | Expected voltage magnitude, 1.0 pu |
VGeni,min, VGeni,max | Lower and upper limitations of voltage magnitude of generators at bus i |
Vi, Vj | Magnitude of voltage at buses i and j |
Vload,i | Voltage magnitude of load at the bus i |
Vload,i,min, Vload,i,max | The lowest and highest voltage magnitude of loads at bus i |
Yij | Shunt admittance of branch ij |
μ1, μ2, μ3, μ4, μ5, μ6, μ7 | Random numbers in range from 0 to 1 |
αi, αj | Phase angles of voltage at bus i and bus j |
ϕ1, ϕ 2, ϕ 3 | Penalty factors in fitness function |
Appendix A
Case | Continuous Variables | Discrete Variables | ||||
---|---|---|---|---|---|---|
Input/Control Variables | Minimize Power Loss | Minimize Vol. Dev. | Minimize L Index | Minimize Power Loss | Minimize Vol. Dev. | Minimize L Index |
VG1 (pu) | 1.1 | 1.0143 | 1.1 | 1.1 | 1.0135 | 1.1 |
VG2 | 1.0943 | 1.0109 | 1.0962 | 1.0945 | 1.0102 | 1.0954 |
VG5 | 1.0747 | 1.0192 | 1.0996 | 1.075 | 1.0193 | 1.1 |
VG8 | 1.0766 | 1.0103 | 1.0918 | 1.077 | 1.0103 | 1.0928 |
VG11 | 1.1 | 0.9843 | 1.0997 | 1.1 | 0.9864 | 1.1 |
VG13 | 1.1 | 1.0099 | 1.1 | 1.1 | 1.0089 | 1.1 |
QC10 (MVAR) | 5 | 5.0000 | 0.0129 | 5 | 5 | 0 |
QC12 | 5 | 2.9662 | 5 | 5 | 3.1 | 5 |
QC15 | 5 | 5.0000 | 4.9194 | 5 | 5 | 5 |
QC17 | 5 | 0.0000 | 0.1459 | 5 | 0 | 2.7 |
QC20 | 3.9845 | 4.9880 | 4.6736 | 3.8 | 5 | 5 |
QC21 | 5 | 5.0000 | 0 | 5 | 5 | 0 |
QC23 | 2.4693 | 5.0000 | 0 | 2.6 | 5 | 0 |
QC24 | 5 | 5.0000 | 5 | 5 | 5 | 5 |
QC29 | 2.1955 | 5.0000 | 0 | 2.5 | 5 | 0 |
T11 | 1.0434 | 0.9980 | 0.9822 | 1.04 | 1.00 | 0.99 |
T12 | 0.9 | 0.9002 | 0.9 | 0.9 | 0.90 | 0.9 |
T15 | 0.9794 | 0.9830 | 0.9801 | 0.98 | 0.98 | 0.99 |
T36 | 0.965 | 0.9782 | 0.9588 | 0.97 | 0.98 | 0.96 |
Case | Continuous Variables | Discrete Variables | ||||
---|---|---|---|---|---|---|
Input/Control Variables | TPL Optimization | TVD Optimization | L Index Optimization | TPL Optimization | TVD Optimization | L Index Optimization |
VG1 (pu) | 1.1 | 1.0249 | 1.0728 | 1.0999 | 0.991 | 1.0329 |
VG2 | 1.0979 | 0.9802 | 1.0412 | 1.0968 | 0.994 | 1.0258 |
VG3 | 1.0858 | 1.0190 | 1.0534 | 1.0815 | 1.0075 | 1.0090 |
VG6 | 1.0792 | 0.9991 | 1.0836 | 1.0777 | 1.0046 | 1.0568 |
VG8 | 1.0978 | 1.0218 | 1.0690 | 1.0954 | 1.019 | 1.0488 |
VG9 | 1.0794 | 1.0260 | 1.0840 | 1.0767 | 1.0387 | 1.0599 |
VG12 | 1.0753 | 1.0022 | 1.0857 | 1.0735 | 1.0282 | 1.0537 |
QC18 (MVAR) | 10 | 0 | 8.8363 | 10 | 7 | 9.9000 |
QC25 | 5.9 | 5.9000 | 0.0001 | 5.9 | 5.9 | 0.6000 |
QC53 | 6.3 | 6.3000 | 1.4086 | 6.3 | 3 | 0 |
T19 | 1.1 | 1.0594 | 0.9109 | 1.1 | 1.03 | 0.9000 |
T20 | 0.9315 | 0.9315 | 0.9845 | 0.95 | 0.97 | 1.0200 |
T31 | 1.0298 | 0.9723 | 1.1000 | 1.03 | 0.97 | 1.0300 |
T35 | 0.9553 | 1.0354 | 0.8815 | 0.97 | 0.9 | 0.9000 |
T36 | 0.9581 | 0.9600 | 0.9135 | 0.94 | 1.07 | 0.8800 |
T37 | 1.0041 | 0.9036 | 0.9303 | 1.01 | 1.03 | 0.9200 |
T41 | 0.9761 | 0.9000 | 0.9670 | 0.98 | 0.95 | 0.9800 |
T46 | 0.9399 | 0.9059 | 0.8972 | 0.94 | 0.92 | 0.9000 |
T54 | 1.0204 | 0.9923 | 0.8670 | 1.02 | 0.8 | 0.8000 |
T58 | 0.9736 | 1.0005 | 0.9593 | 0.97 | 0.99 | 0.9600 |
T59 | 0.9569 | 0.9002 | 0.9577 | 0.96 | 1 | 0.9400 |
T65 | 0.9683 | 0.9653 | 0.9776 | 0.97 | 1.04 | 1.0500 |
T66 | 0.933 | 1.0141 | 0.8858 | 0.93 | 0.81 | 0.8700 |
T71 | 0.9652 | 0.9002 | 0.9637 | 0.97 | 1.02 | 1.0200 |
T73 | 1.1 | 0.9913 | 1.0149 | 1.1 | 1.06 | 1.0900 |
T76 | 1.0065 | 1.0249 | 1.0872 | 1.01 | 0.95 | 1.1000 |
T80 | 0.9767 | 0.9802 | 0.9900 | 0.98 | 1 | 0.9900 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 1.0268 | VG62 | 1.042 | VG113 | 1.0419 |
VG4 | 1.0491 | VG65 | 1.0572 | VG116 | 1.0492 |
VG6 | 1.0378 | VG66 | 1.068 | QC5 (MVAR) | 0 |
VG8 | 1.0371 | VG69 | 1.0783 | QC34 | 9.5094 |
VG10 | 1.041 | VG70 | 1.0457 | QC37 | 0 |
VG12 | 1.0356 | VG72 | 1.0387 | QC44 | 10 |
VG15 | 1.0309 | VG73 | 1.0404 | QC45 | 4.6391 |
VG18 | 1.0341 | VG74 | 1.0346 | QC46 | 0 |
VG19 | 1.0305 | VG76 | 1.0333 | QC48 | 13.1049 |
VG24 | 1.0422 | VG77 | 1.0502 | QC74 | 1.0051 |
VG25 | 1.0826 | VG80 | 1.0601 | QC79 | 19.9991 |
VG26 | 1.0794 | VG85 | 1.0516 | QC82 | 20 |
VG27 | 1.0372 | VG87 | 1.0541 | QC83 | 4.5755 |
VG31 | 1.0293 | VG89 | 1.0634 | QC105 | 1.0771 |
VG32 | 1.0316 | VG90 | 1.045 | QC107 | 5.9685 |
VG34 | 1.0409 | VG91 | 1.0462 | QC110 | 0.7361 |
VG36 | 1.0382 | VG92 | 1.056 | T 8 (pu) | 0.9847 |
VG40 | 1.0141 | VG99 | 1.0491 | T 32 | 1.043 |
VG42 | 1.0183 | VG100 | 1.0521 | T36 | 0.9841 |
VG46 | 1.0362 | VG103 | 1.0383 | T 51 | 0.9883 |
VG49 | 1.0543 | VG104 | 1.0283 | T 93 | 0.9785 |
VG54 | 1.0258 | VG105 | 1.022 | T 95 | 1.0061 |
VG55 | 1.0232 | VG107 | 1.0076 | T 102 | 0.9217 |
VG56 | 1.0239 | VG110 | 1.0169 | T 107 | 0.9389 |
VG59 | 1.0476 | VG111 | 1.0245 | T 127 | 0.9751 |
VG61 | 1.0447 | VG112 | 1.0016 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 1.0024 | VG62 | 1.009 | VG113 | 0.9973 |
VG4 | 0.9899 | VG65 | 0.984 | VG116 | 0.9942 |
VG6 | 0.9921 | VG66 | 1.0046 | QC5 (MVAR) | −36.195 |
VG8 | 0.9931 | VG69 | 0.982 | QC34 | 0.4873 |
VG10 | 0.9894 | VG70 | 0.9669 | QC37 | −24.8748 |
VG12 | 1.0146 | VG72 | 1.0548 | QC44 | 9.8991 |
VG15 | 1.0102 | VG73 | 1.0274 | QC45 | 9.6248 |
VG18 | 0.9729 | VG74 | 1.0254 | QC46 | 5.7702 |
VG19 | 1.0353 | VG76 | 1.0131 | QC48 | 0.029 |
VG24 | 1.0217 | VG77 | 1.0127 | QC74 | 7.6541 |
VG25 | 0.9661 | VG80 | 1.0148 | QC79 | 0.3241 |
VG26 | 0.97 | VG85 | 1.0115 | QC82 | 19.8856 |
VG27 | 1.0068 | VG87 | 1.0054 | QC83 | 9.9122 |
VG31 | 1.0032 | VG89 | 1.0076 | QC105 | 0.9221 |
VG32 | 1.0036 | VG90 | 1.0911 | QC107 | 0.4846 |
VG34 | 1.0043 | VG91 | 0.9554 | QC110 | 0.7378 |
VG36 | 1.0003 | VG92 | 0.9986 | T 8 (pu) | 0.9631 |
VG40 | 1.0117 | VG99 | 1.0954 | T 32 | 1.0507 |
VG42 | 0.9937 | VG100 | 1.0373 | T36 | 1.0058 |
VG46 | 1.0437 | VG103 | 0.9517 | T 51 | 0.9923 |
VG49 | 1.0006 | VG104 | 1.0771 | T 93 | 0.9419 |
VG54 | 1.0234 | VG105 | 0.981 | T 95 | 1.0164 |
VG55 | 0.9934 | VG107 | 1.0824 | T 102 | 1.041 |
VG56 | 1.0163 | VG110 | 1.0192 | T 107 | 1.0865 |
VG59 | 1.0662 | VG111 | 0.9656 | T 127 | 0.9708 |
VG61 | 0.9939 | VG112 | 1.0682 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 0.9631 | VG62 | 1.0448 | VG113 | 1.0456 |
VG4 | 0.9979 | VG65 | 1.0665 | VG116 | 0.9985 |
VG6 | 0.9766 | VG66 | 0.9506 | QC5 (MVAR) | −21.7949 |
VG8 | 0.95 | VG69 | 0.9516 | QC34 | 0.0016 |
VG10 | 1.0959 | VG70 | 0.96 | QC37 | −24.4039 |
VG12 | 0.978 | VG72 | 1.0241 | QC44 | 7.2981 |
VG15 | 0.9846 | VG73 | 1.1 | QC45 | 3.8457 |
VG18 | 0.98 | VG74 | 0.9631 | QC46 | 10 |
VG19 | 0.9965 | VG76 | 1.0128 | QC48 | 0.0079 |
VG24 | 1.0489 | VG77 | 1.0384 | QC74 | 7.4084 |
VG25 | 1 | VG80 | 1.0183 | QC79 | 6.8455 |
VG26 | 1.0999 | VG85 | 1.053 | QC82 | 19.8649 |
VG27 | 1.0188 | VG87 | 1.052 | QC83 | 10 |
VG31 | 1.0149 | VG89 | 0.9634 | QC105 | 5.8526 |
VG32 | 1.0137 | VG90 | 0.9571 | QC107 | 0.1586 |
VG34 | 1.0596 | VG91 | 0.9718 | QC110 | 1.0895 |
VG36 | 1.0261 | VG92 | 0.9501 | T 8 (pu) | 0.9 |
VG40 | 1.0352 | VG99 | 1.0989 | T 32 | 1.0989 |
VG42 | 1.0969 | VG100 | 0.995 | T36 | 0.9 |
VG46 | 1.1 | VG103 | 1.0955 | T 51 | 1.0054 |
VG49 | 1.0444 | VG104 | 0.9615 | T 93 | 0.9989 |
VG54 | 0.9623 | VG105 | 1.0286 | T 95 | 1.0989 |
VG55 | 1.0373 | VG107 | 0.95 | T 102 | 1.077 |
VG56 | 0.9961 | VG110 | 0.9539 | T 107 | 0.9759 |
VG59 | 0.9501 | VG111 | 0.9549 | T 127 | 1.053 |
VG61 | 0.9678 | VG112 | 0.9502 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 1.0277 | VG62 | 1.0408 | VG113 | 1.0427 |
VG4 | 1.0483 | VG65 | 1.0597 | VG116 | 1.0477 |
VG6 | 1.0395 | VG66 | 1.0689 | QC5 (MVAR) | 0 |
VG8 | 1.0347 | VG69 | 1.0761 | QC34 | 10.1 |
VG10 | 1.0434 | VG70 | 1.0387 | QC37 | 0 |
VG12 | 1.037 | VG72 | 1.0323 | QC44 | 10 |
VG15 | 1.0326 | VG73 | 1.0402 | QC45 | 4.6 |
VG18 | 1.0321 | VG74 | 1.0322 | QC46 | 0 |
VG19 | 1.0299 | VG76 | 1.0296 | QC48 | 6.3 |
VG24 | 1.0453 | VG77 | 1.0505 | QC74 | 0.8 |
VG25 | 1.0766 | VG80 | 1.0617 | QC79 | 6.7 |
VG26 | 1.0901 | VG85 | 1.052 | QC82 | 20 |
VG27 | 1.0344 | VG87 | 1.047 | QC83 | 4.4 |
VG31 | 1.0257 | VG89 | 1.0631 | QC105 | 7.2 |
VG32 | 1.0332 | VG90 | 1.0439 | QC107 | 4.1 |
VG34 | 1.0376 | VG91 | 1.0466 | QC110 | 1.5 |
VG36 | 1.0356 | VG92 | 1.0562 | T 8 (pu) | 0.98 |
VG40 | 1.0188 | VG99 | 1.0479 | T 32 | 1.05 |
VG42 | 1.0239 | VG100 | 1.0506 | T36 | 0.98 |
VG46 | 1.0332 | VG103 | 1.0405 | T 51 | 0.99 |
VG49 | 1.0554 | VG104 | 1.0305 | T 93 | 0.98 |
VG54 | 1.0258 | VG105 | 1.0268 | T 95 | 1 |
VG55 | 1.023 | VG107 | 1.0132 | T 102 | 0.9 |
VG56 | 1.025 | VG110 | 1.0196 | T 107 | 0.94 |
VG59 | 1.0495 | VG111 | 1.0281 | T 127 | 0.97 |
VG61 | 1.047 | VG112 | 1.0026 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 1.0025 | VG62 | 1.0095 | VG113 | 0.9974 |
VG4 | 0.9897 | VG65 | 0.9831 | VG116 | 0.9975 |
VG6 | 0.9922 | VG66 | 1.0041 | QC5 (MVAR) | −36.2 |
VG8 | 0.9929 | VG69 | 0.95 | QC34 | 0.5 |
VG10 | 0.9895 | VG70 | 0.9669 | QC37 | −24.9 |
VG12 | 1.0146 | VG72 | 1.0554 | QC44 | 9.9 |
VG15 | 1.0099 | VG73 | 1.0274 | QC45 | 9.6 |
VG18 | 0.9785 | VG74 | 1.0367 | QC46 | 5.8 |
VG19 | 1.0354 | VG76 | 1.0131 | QC48 | 0 |
VG24 | 1.0218 | VG77 | 1.0127 | QC74 | 7.7 |
VG25 | 0.9662 | VG80 | 1.0149 | QC79 | 0.3 |
VG26 | 0.965 | VG85 | 1.0115 | QC82 | 19.9 |
VG27 | 1.0072 | VG87 | 1.0054 | QC83 | 9.9 |
VG31 | 1.0031 | VG89 | 1.0075 | QC105 | 0.9 |
VG32 | 1.0031 | VG90 | 1.0913 | QC107 | 0.5 |
VG34 | 1.0042 | VG91 | 0.9513 | QC110 | 0.7 |
VG36 | 1.0003 | VG92 | 0.9986 | T 8 (pu) | 0.96 |
VG40 | 1.0114 | VG99 | 1.0981 | T 32 | 1.05 |
VG42 | 0.9937 | VG100 | 1.0371 | T36 | 1.01 |
VG46 | 1.0438 | VG103 | 0.9517 | T 51 | 0.99 |
VG49 | 1.0006 | VG104 | 1.077 | T 93 | 0.94 |
VG54 | 1.0234 | VG105 | 0.981 | T 95 | 1.02 |
VG55 | 0.9939 | VG107 | 1.0824 | T 102 | 1.04 |
VG56 | 1.0162 | VG110 | 1.019 | T 107 | 1.09 |
VG59 | 1.0669 | VG111 | 0.9688 | T 127 | 0.97 |
VG61 | 0.9938 | VG112 | 1.0682 |
Input/Control Variables | Value | Input/Control Variables | Value | Input/Control Variables | Value |
---|---|---|---|---|---|
VG1 (pu) | 0.9529 | VG62 | 1.0389 | VG113 | 1.0491 |
VG4 | 0.9972 | VG65 | 1.0693 | VG116 | 1.0024 |
VG6 | 0.9765 | VG66 | 0.9502 | QC5 (MVAR) | −22.2 |
VG8 | 0.95 | VG69 | 0.9507 | QC34 | 0 |
VG10 | 1.0972 | VG70 | 0.9574 | QC37 | −24.4 |
VG12 | 0.9783 | VG72 | 1.0244 | QC44 | 7.1 |
VG15 | 0.9862 | VG73 | 1.1 | QC45 | 4.1 |
VG18 | 0.9801 | VG74 | 0.9544 | QC46 | 10 |
VG19 | 0.9965 | VG76 | 1.0191 | QC48 | 0 |
VG24 | 1.0449 | VG77 | 1.0379 | QC74 | 7.4 |
VG25 | 0.9991 | VG80 | 1.0184 | QC79 | 7.1 |
VG26 | 1.0999 | VG85 | 1.0534 | QC82 | 19.9 |
VG27 | 1.0159 | VG87 | 1.0623 | QC83 | 10 |
VG31 | 1.015 | VG89 | 0.9635 | QC105 | 7.8 |
VG32 | 1.0238 | VG90 | 0.9663 | QC107 | 0 |
VG34 | 1.0596 | VG91 | 0.9769 | QC110 | 1.2 |
VG36 | 1.0361 | VG92 | 0.95 | T 8 (pu) | 0.9 |
VG40 | 1.0355 | VG99 | 1.1 | T 32 | 1.1 |
VG42 | 1.0956 | VG100 | 0.9968 | T36 | 0.9 |
VG46 | 1.1 | VG103 | 1.093 | T 51 | 1.02 |
VG49 | 1.0444 | VG104 | 0.9611 | T 93 | 1.01 |
VG54 | 0.9617 | VG105 | 1.0286 | T 95 | 1.1 |
VG55 | 1.0372 | VG107 | 0.95 | T 102 | 1.06 |
VG56 | 0.9956 | VG110 | 0.9535 | T 107 | 0.98 |
VG59 | 0.9501 | VG111 | 0.9513 | T 127 | 1.05 |
VG61 | 0.9682 | VG112 | 0.9507 |
References
- Awad, N.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N. An efficient differential evolution algorithm for stochastic OPF based active-reactive power dispatch problem considering renewable generators. Appl. Soft Comput. 2019, 76, 445–458. [Google Scholar] [CrossRef]
- Sayah, S. Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC-DC power systems. Appl. Soft Comput. 2018, 73, 591–606. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vu Quynh, N.; Duong, M.Q.; Van Dai, L. Modified differential evolution algorithm: A novel approach to optimize the operation of hydrothermal power systems while considering the different constraints and valve point loading effects. Energies 2018, 11, 540. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.; Engelmann, A.; Hagenmeyer, V.; Faulwasser, T. Hierarchical distributed mixed-integer optimization for reactive power dispatch. IFAC-PapersOnLine 2018, 51, 368–373. [Google Scholar] [CrossRef]
- Da Costa, G.R.M. Modified Newton method for reactive dispatching. Int. J. Electr. Power Energy Syst. 2002, 24, 815–819. [Google Scholar] [CrossRef]
- Venkatesh, B.; Sasadivam, G.; Khan, M.A. Towards on-line optimal reactive power scheduling using ANN memory model based method. In Proceedings of the Power Engineering Society 1999 Winter Meeting, New York, NY, USA, 31 January–4 February 1999; Volume 2, pp. 844–848. [Google Scholar] [CrossRef]
- Rezania, E.; Shahidehpour, S.M. Real power loss minimization using interior point method. Int. J. Electr. Power Energy Syst. 2001, 23, 45–56. [Google Scholar] [CrossRef]
- Grudinin, N. Reactive power optimization using successive quadratic programming method. IEEE Trans. Power Syst. 1998, 13, 1219–1225. [Google Scholar] [CrossRef]
- Cao, Y.J.; Wu, Q.H. Optimal reactive power dispatch using an adaptive genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms in Engineering Systems, Glasgow, UK, 2–4 September 1997; pp. 117–122. [Google Scholar] [CrossRef]
- Subbaraj, P.; Rajnarayanan, P.N. Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electr. Power Syst. Res. 2009, 79, 374–381. [Google Scholar] [CrossRef]
- Alam, M.S.; De, M. Optimal reactive power dispatch using hybrid loop-genetic based algorithm. In Proceedings of the Power Systems Conference (NPSC) IEEE, Bhubaneswar, India, 19–21 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Rayudu, K.; Yesuratnam, G.; Jayalaxmi, A. Improving voltage stability by optimal reactive power dispatch based on genetic algorithm and linear programming technique. In Proceedings of the International Conference on IEEE: Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 1357–1362. [Google Scholar] [CrossRef]
- Văduva, A.M.; Bulac, C. New evolutionary algorithm method for solving optimal reactive power dispatch problem. In Proceedings of the 2016 International Conference on IEEE on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Villa-Acevedo, W.; López-Lezama, J.; Valencia-Velásquez, J.A. A novel constraint handling approach for the optimal reactive power dispatch problem. Energies 2018, 11, 2352. [Google Scholar] [CrossRef] [Green Version]
- Kanatip, R.; Keerati, C. Probabilistic optimal power flow considering load and solar power uncertainties using particle swarm optimization. GMSARN Int. J. 2021, 15, 37–43. [Google Scholar]
- Mahadevan, K.; Kannan, P.S. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl. Soft Comput. 2010, 10, 641–652. [Google Scholar] [CrossRef]
- Singh, R.P.; Mukherjee, V.; Ghoshal, S.P. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. 2015, 29, 298–309. [Google Scholar] [CrossRef]
- Reddy, P.L.; Yesuratnam, G. PSO based optimal reactive power dispatch for voltage profile improvement. In Proceedings of the Power, Communication and Information Technology Conference (PCITC) on IEEE, Bhubaneswar, India, 15–17 October 2015; pp. 361–366. [Google Scholar] [CrossRef]
- Polprasert, J.; Ongsakul, W.; Dieu, V.N. Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electr. Power Compon. Syst. 2016, 44, 518–532. [Google Scholar] [CrossRef]
- Dieu, V.N.; Nguyen, T.P.; Nguyen, K.D. Multi-objective security constrained optimal active and reactive power dispatch using hybrid particle swarm optimization and differential evolution. GMSARN Int. J. 2018, 12, 84–117. [Google Scholar]
- Mehdinejad, M.; Mohammadi-Ivatloo, B.; Dadashzadeh-Bonab, R.; Zare, K. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. Int. J. Electr. Power Energy Syst. 2016, 83, 104–116. [Google Scholar] [CrossRef]
- Kaur, D.; Lie, T.T.; Nair, N.K.; Valles, B. An optimal reactive power dispatch (ORPD) for voltage security using particle swarm optimization (PSO) in graph theory. In Proceedings of the 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, 14–16 October 2016; pp. 25–30. [Google Scholar] [CrossRef]
- Sahli, Z.; Hamouda, A.; Bekrar, A.; Trentesaux, D. Reactive power dispatch optimization with voltage profile improvement using an efficient hybrid algorithm. Energies 2018, 11, 2134. [Google Scholar] [CrossRef] [Green Version]
- El Ela, A.A.; Abido, M.A.; Spea, S.R. Differential evolution algorithm for optimal reactive power dispatch. Electr. Power Syst. Res. 2011, 81, 458–464. [Google Scholar] [CrossRef]
- Huang, C.M.; Huang, Y.C. Combined differential evolution algorithm and ant system for optimal reactive power dispatch. Energy Procedia 2012, 14, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Ghanbarian, M.M.; Ghavidel, S.; Rahmani, S.; Moghaddam, E.M. Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study. Inf. Sci. 2014, 278, 231–249. [Google Scholar] [CrossRef]
- Basu, M. Quasi-oppositional differential evolution for optimal reactive power dispatch. Int. J. Electr. Power Energy Syst. 2016, 78, 29–40. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, Z. Reactive power optimization using hybrid CABC-DE algorithm. Electr. Power Compon. Syst. 2017, 45, 980–989. [Google Scholar] [CrossRef]
- Duman, S.; Sönmez, Y.; Güvenç, U.; Yörükeren, N. Optimal reactive power dispatch using a gravitational search algorithm. IET Gener. Transm. Distrib. 2012, 6, 563–576. [Google Scholar] [CrossRef]
- Babu, M.R.; Lakshmi, M. Gravitational search algorithm based approach for optimal reactive power dispatch. In Proceedings of the Second International Conference on IEEE on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30–31 March 2016; pp. 360–366. [Google Scholar] [CrossRef]
- Chen, G.; Liu, L.; Zhang, Z.; Huang, S. Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints. Appl. Soft Comput. 2017, 50, 58–70. [Google Scholar] [CrossRef]
- Rayudu, K.; Yesuratnam, G.; Jayalaxmi, A. Ant colony optimization algorithm based optimal reactive power dispatch to improve voltage stability. In Proceedings of the 2017 International Conference on IEEE on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mandal, B.; Roy, P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int. J. Electr. Power Energy Syst. 2013, 53, 123–134. [Google Scholar] [CrossRef]
- Ghasemi, M.; Taghizadeh, M.; Ghavidel, S.; Aghaei, J.; Abbasian, A. Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 2015, 39, 100–108. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z. Cuckoo Search Algorithm as an optimizer for Optimal Reactive Power Dispatch problems. In Proceedings of the 2017 3rd International Conference on IEEE on Control, Automation and Robotics, Nagoya, Japan, 24–26 April 2017; pp. 735–739. [Google Scholar] [CrossRef]
- An, N.H.T.; Dieu, V.N.; Nguyen, T.T.; Kien, V.T. One rank cuckoo search algorithm for optimal reactive power dispatch. GMSARN Int. J. 2015, 73, 82 . [Google Scholar]
- Khazali, A.H.; Kalantar, M. Optimal reactive power dispatch based on harmony search algorithm. Int. J. Electr. Power Energy Syst. 2011, 33, 684–692. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mukherjee, V. Solution of optimal reactive power dispatch by chaotic krill herd algorithm. IET Gener. Transm. Distrib. 2015, 9, 2351–2362. [Google Scholar] [CrossRef]
- Rajan, A.; Malakar, T. Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm. Int. J. Electr. Power Energy Syst. 2015, 66, 9–24. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Mohamed, M.R.; Aliman, O. Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Appl. Soft Comput. 2015, 32, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Rayudu, K.; Yesuratnam, G.; Jayalaxmi, A. Artificial Bee Colony algorithm for optimal reactive power dispatch to improve voltage stability. In Proceedings of the 2016 International Conference on IEEE on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Rajan, A.; Malakar, T. Exchange market algorithm based optimum reactive power dispatch. Appl. Soft Comput. 2016, 43, 320–336. [Google Scholar] [CrossRef]
- Abaci, K.; Yamaçli, V. Optimal reactive-power dispatch using differential search algorithm. Electr. Eng. 2017, 99, 213–225. [Google Scholar] [CrossRef]
- Mouassa, S.; Bouktir, T.; Salhi, A. Ant lion optimizer for solving optimal reactive power dispatch problem in power systems, engineering science and technology. An. Int. J. 2017, 3, 885–895. [Google Scholar] [CrossRef]
- Anbarasan, P.; Jayabarathi, T. Optimal reactive power dispatch problem solved by an improved colliding bodies optimization algorithm. In Proceedings of the 2017 IEEE International Conference on IEEE on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Heidari, A.A.; Abbaspour, R.A.; Jordehi, A.R. Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl. Soft Comput. 2017, 57, 657–671. [Google Scholar] [CrossRef]
- Barakat, A.F.; El-Sehiemy, R.A.; Elsaid, M.; Osman, E. Solving reactive power dispatch problem by using JAYA optimization Algorithm. Int. J. Eng. Res. Afr. Trans Tech Publ. 2018, 36, 12–24. [Google Scholar] [CrossRef]
- Mei, R.N.S.; Sulaiman, M.H.; Mustaffa, Z.; Daniyal, H. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Nuaekaew, K.; Artrit, P.; Pholdee, N.; Bureerat, S. Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Syst. Appl. 2017, 87, 79–89. [Google Scholar] [CrossRef]
- Ben oualid Medani, K.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electric Power Syst. Res. 2018, 163, 696–705. [Google Scholar] [CrossRef]
- Shareef, S.M.; Rao, R.S. Optimal reactive power dispatch under unbalanced conditions using hybrid swarm intelligence. Comput. Electr. Eng. 2018, 69, 183–193. [Google Scholar] [CrossRef]
- Meddeb, A.; Amor, N.; Abbes, M.; Chebbi, S. A novel approach based on crow search algorithm for solving reactive power dispatch problem. Energies 2018, 11, 3321. [Google Scholar] [CrossRef] [Green Version]
- Tizhoosh, H. Opposition-based learning: A new scheme for machine intelligence. In Proceeding of the International Conference on Computational Intelligence for Modelling Control and Automation, Vienna, Austria, 28–30 November 2005. [Google Scholar] [CrossRef]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2010, 33, 61–106. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Amr, A.B.; Ibrahim, F.A. One rank cuckoo search algorithm with application to algorithmic, trading systems optimization. Int. J. Comput. Appl. 2013, 64, 30–37. [Google Scholar] [CrossRef]
- Pierezan, J.; Coelho, L.D.S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC) IEEE, Busan, Korea, 27–28 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Pham, T.D.; Nguyen, T.T.; Dinh, B.H. Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm. Neural Comput. Appl. 2021, 33, 4343–4371. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.; Nguyen, N.A.; Duong, T.L. A novel method based on coyote algorithm for simultaneous network reconfiguration and distribution generation placement. Ain Shams Eng. J. 2021, 12, 665–676. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.D.; Kien, L.C.; Van Dai, L. Improved coyote optimization algorithm for optimally installing solar photovoltaic distribution generation units in radial distribution power systems. Complexity 2020. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Gomes, G.F.; da Cunha, S.S.; Ancelotti, A.C. A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng. Comput. 2018, 1–8. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- MATPOWER 4.1 IEEE 30-Bus, IEEE 57-Bus and 118-Bus Test System. Available online: http://www.pserc.cornell.edu/matpower (accessed on 12 May 2021).
- Mernik, M.; Liu, S.H.; Karaboga, D.; Crepinšek, M. On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf. Sci. 2015, 291, 115–127. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Yuan, Y.; Zhang, Y.; Yang, B. A modified differential evolution approach for dynamic economic dispatch with valve-point effects. Energy Convers. Manag. 2008, 49, 3447–3453. [Google Scholar] [CrossRef]
Test Case | Description | Control Variables | Control Parameter Selection | |
---|---|---|---|---|
For SSA, SFOA, and WCA | For COA Methods | |||
The IEEE 30-bus system [63] | 6 generator buses, 24 load buses, 41 branches, 9 VAR compensators, 4 transformers. | VGen,has (i = 1, …, 6) Qcap,has (i = 1, …, 9) TTi (i = 1, …, 4) | Npop = 20 NIter = 100 | Ncoyote =4 Npack= 4 NIter = 100 |
The IEEE 57-bus system [63] | 7 generator buses, 50 load buses, 80 branches, 3 VAR compensators, 15 transformers. | VGen,has (i = 1, …, 7) Qcap,has (i = 1, …, 3) TTi (i = 1, …, 15) | Npop = 20 NIter = 300 | Ncoyote =4 Npack= 4 NIter = 300 |
The IEEE 118-bus system [63] | 54 generator buses, 64 load buses, 186 branches, 14 VAR compensators, 9 transformers. | VGen,has (i = 1, …, 54) Qcap,has (i = 1, …, 14) TTi (i = 1, …, 9) | Npop = 20 NIter = 400 | Ncoyote =4 Npack = 4 NIter = 400 |
Method | Ncoyote | 9 | 6 | 4 | 3 |
Npack | 2 | 3 | 4 | 5 | |
Npop | 18 | 18 | 16 | 15 | |
Nspi | 20 | 21 | 20 | 20 | |
ICOA | Min. (MW) | 4.5178 | 4.5154 | 4.5128 | 4.5238 |
Avg. (MW) | 4.5789 | 4.5997 | 4.7037 | 4.6868 | |
Max. (MW) | 5.0749 | 5.4646 | 5.5696 | 5.5605 | |
Std. dev. (MW) | 0.0868 | 0.143 | 0.2594 | 0.2649 | |
CPU time (s) | 6.38 | 6.52 | 6.36 | 6.91 | |
SR (%) | 100 | 100 | 100 | 100 | |
COA | Min. (MW) | 4.789 | 4.682 | 4.5777 | 4.595 |
Avg. (MW) | 5.072 | 5.1502 | 4.9205 | 5.2805 | |
Max. (MW) | 5.491 | 5.627 | 5.8416 | 5.5605 | |
Std. dev. (MW) | 0.1443 | 0.1985 | 0.2595 | 0.2920 | |
CPU time (s) | 8.3 | 8.4 | 8.2 | 8.5 | |
SR (%) | 87 | 76 | 92 | 92 |
Method | Ncoyote | 9 | 6 | 4 | 3 |
Npack | 2 | 3 | 4 | 5 | |
ICOA | Min. (MW) | 0.09833 | 0.0948 | 0.0888 | 0.0971 |
Avg. (MW) | 0.1813 | 0.1848 | 0.1315 | 0.1594 | |
Max. (MW) | 0.3479 | 0.5215 | 0.3231 | 0.3201 | |
Std. dev. (MW) | 0.0516 | 0.0715 | 0.0416 | 0.0524 | |
CPU time (s) | 6.88 | 6.38 | 6.39 | 6.73 | |
SR (%) | 100 | 100 | 100 | 100 | |
COA | Min. (MW) | 0.1313 | 0.1220 | 0.1231 | 0.1240 |
Avg. (MW) | 0.2281 | 0.2047 | 0.1982 | 0.2112 | |
Max. (MW) | 0.4681 | 0.4433 | 0.4016 | 0.4181 | |
Std. dev. (MW) | 0.0716 | 0.0585 | 0.0800 | 0.0936 | |
CPU time (s) | 8.4 | 8.2 | 8.3 | 8.4 | |
SR (%) | 88 | 89 | 90 | 79 |
Method | Ncoyote | 9 | 6 | 4 | 3 |
Npack | 2 | 3 | 4 | 5 | |
ICOA | Min. (MW) | 0.1250 | 0.1246 | 0.1242 | 0.1249 |
Avg. (MW) | 0.1262 | 0.1273 | 0.1264 | 0.1273 | |
Max. (MW) | 0.1279 | 0.1494 | 0.1425 | 0.1391 | |
Std. dev. (MW) | 0.0008 | 0.0039 | 0.0025 | 0.0032 | |
CPU time (s) | 7.3 | 6.9 | 6.9 | 6.8 | |
SR (%) | 96 | 96 | 94 | 98 | |
COA | Min. (MW) | 0.1316 | 0.1307 | 0.1252 | 0.1284 |
Avg. (MW) | 0.1392 | 0.1324 | 0.1267 | 0.1325 | |
Max. (MW) | 0.1453 | 0.1585 | 0.1308 | 0.1532 | |
Std. dev. (MW) | 0.0082 | 0.0093 | 0.0011 | 0.0123 | |
CPU time (s) | 9.7 | 9.5 | 9.4 | 9.2 | |
SR (%) | 76 | 68 | 70 | 72 |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 4.5128 | 4.7037 | 6.36 | 2000 | 1 | X | 100 | |
ICOA | 4.5138 | 4.870 | 6.78 | 2000 | - | X | 100 | |
WCA | 4.58218 | 4.76097 | 8.7 | 2000 | 1.37 | X | 100 | |
SSA | 4.7175 | 4.9522 | 6.3 | 2000 | 0.99 | X | 89 | |
SFOA | 4.7364 | 5.1177 | 6.9 | 2000 | 1.08 | X | 87 | |
COA | 4.5777 | 4.9205 | 8.2 | 2000 | 1.29 | X | 92 | |
COA1 | 4.534 | 4.9128 | 7.2 | 2000 | 1.13 | X | 100 | |
COA2 | 4.5328 | 4.9196 | 7.8 | 2000 | 1.23 | X | 100 | |
SGA [14] | 4.5692 | - | - | 18,000 | - | - | - | - |
PSO-AIW [19] | 4.8458 | 4.8761 | 8.762 | 4000 | 1.44 | X | X | - |
PSO-AAC [19] | 4.8449 | 4.8702 | 8.68 | 4000 | 1.42 | X | - | |
SPSO-AAC [19] | 4.5262 | 4.5564 | 9.092 | 4000 | 1.49 | X | - | |
PSO-CF [19] | 4.5258 | 4.5711 | 8.48 | 4000 | 1.39 | X | - | |
PSO-PG [19] | 4.6425 | 4.732 | 8.216 | 4000 | 1.35 | X | - | |
PSO-SWT [19] | 4.6578 | 4.9413 | 7.995 | 4000 | 1.31 | X | - | |
PSO-PGSWT [19] | 4.7914 | 5.2349 | 7.912 | 4000 | 1.30 | X | - | |
PSO-IPG [19] | 4.5256 | 4.5508 | 7.852 | 4000 | 1.29 | X | - | |
HPSO-TS [23] | 4.5213 | - | - | - | - | X | - | |
TS [23] | 4.9203 | - | - | - | - | X | - | |
PSO [23] | 4.6862 | - | - | - | - | X | - | |
DE [24] | 4.555 | - | - | 75,000 | - | X | - | |
GSA [29] | 4.51431 | - | - | 20,000 | - | X | - | |
QOTLBO [33] | 4.5594 | 4.5601 | - | 10,000 | - | X | - | |
TLBO [33] | 4.5629 | 4.5695 | - | 10,000 | - | X | - | |
SGA [37] | 4.9408 | 5.0378 | - | - | - | X | - | |
PSO [37] | 4.9239 | 4.972 | - | - | - | X | - | |
HAS [37] | 4.9059 | 4.924 | - | - | - | X | - | |
ALO [44] | 4.59 | - | 119.3 | 4000 | 14.07 | X | - | |
BA [44] | 4.628 | - | 129.4 | 4000 | 15.26 | X | - | |
GWO [44] | 4.6119 | - | 127.2 | 4000 | 15.00 | X | - | |
ABC [44] | 4.611 | - | 130.6 | 8000 | 15.40 | X | - | |
JA [47] | 4.5495 | - | - | 15,000 | - | X | - | |
PSO [50] | 4.7779 | - | - | - | - | X | - | |
PSO-AAC [50] | 4.6469 | - | - | - | - | X | - | |
WOA [50] | 4.5943 | - | - | - | - | X | - |
Method | Min. | Avg. | Average Time (s) | NIter | Npop | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|---|---|
ICOA | 0.0888 | 0.1315 | 6.39 | 100 | 16 | 2000 | 1 | X | 100 | |
ICOA | 0.0905 | 0.1321 | 6.89 | 100 | 16 | 2000 | X | 100 | ||
WCA | 0.116855 | 0.175071 | 8.5 | 100 | 20 | 2000 | 1.33 | X | 100 | |
SSA | 0.1806 | 0.3392 | 6.3 | 100 | 20 | 2000 | 0.99 | X | 92 | |
SFOA | 0.1588 | 0.2326 | 6.9 | 100 | 20 | 2000 | 1.08 | X | 93 | |
COA | 0.122 | 0.2047 | 8.2 | 100 | 16 | 2000 | 1.28 | X | 90 | |
COA1 | 0.1093 | 0.1828 | 7.2 | 100 | 16 | 2000 | 1.13 | X | 100 | |
COA2 | 0.0999 | 0.1795 | 7.8 | 100 | 16 | 2000 | 1.22 | X | 98 | |
PSO-AIW [19] | 0.1038 | 0.1597 | 12.25 | 200 | 20 | 4000 | 2.00 | X | - | |
PSO-AAC [19] | 0.2064 | 0.2376 | 12.88 | 200 | 20 | 4000 | 2.10 | X | - | |
SPSO-AAC [19] | 0.1354 | 0.1558 | 12.59 | 200 | 20 | 4000 | 2.05 | X | - | |
PSO-CF [19] | 0.1287 | 0.1557 | 12.94 | 200 | 20 | 4000 | 2.11 | X | - | |
PSO-PG [19] | 0.1202 | 0.144 | 12.45 | 200 | 20 | 4000 | 2.03 | X | - | |
PSO-SWT [19] | 0.1614 | 0.1814 | 22.57 | 200 | 20 | 4000 | 3.68 | X | - | |
PSO-PGSWT [19] | 0.1539 | 0.2189 | 22.32 | 200 | 20 | 4000 | 3.64 | X | - | |
PSO-IPG [19] | 0.0892 | 0.1078 | 9.724 | 200 | 20 | 4000 | 1.59 | X | - | |
DE [24] | 0.0911 | - | - | 500 | 150 | 75,000 | - | X | - | |
GSA [29] | 0.0676 | - | - | 200 | 100 | 20,000 | - | X | - | |
QOTLBO [33] | 0.0856 | 0.0872 | - | 100 | 50 | 10,000 | - | X | - | |
TLBO [33] | 0.0913 | 0.0934 | - | 100 | 50 | 10,000 | - | X | - |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 0.1242 | 0.1264 | 6.9 | 2000 | 1.00 | X | 94 | |
ICOA | 0.12437 | 0.1271 | 6.9 | 2000 | 1.0 | X | 92 | |
WCA | 0.124754 | 0.127404 | 8.9 | 2000 | 1.29 | X | 90 | |
SSA | 0.1313 | 0.148 | 7 | 2000 | 1.01 | X | 78 | |
SFOA | 0.1275 | 0.1384 | 7.3 | 2000 | 1.06 | X | 81 | |
COA | 0.1252 | 0.1267 | 9.4 | 2000 | 1.36 | X | 76 | |
COA1 | 0.1246 | 0.1266 | 7.9 | 2000 | 1.14 | X | 92 | |
COA2 | 0.1252 | 0.1299 | 8.3 | 2000 | 1.20 | X | 88 | |
PSO-AIW [19] | 0.1258 | 0.127 | 14.42 | 4000 | 2.18 | X | - | |
PSO-AAC [19] | 0.1499 | 0.1513 | 14.53 | 4000 | 2.19 | X | - | |
SPSO-AAC [19] | 0.1271 | 0.1285 | 14.05 | 4000 | 2.12 | X | - | |
PSO-CF [19] | 0.1261 | 0.1279 | 14.39 | 4000 | 2.17 | X | - | |
PSO-PG [19] | 0.1264 | 0.1297 | 14.84 | 4000 | 2.24 | X | - | |
PSO-SWT [19] | 0.1488 | 0.1634 | 18.99 | 4000 | 2.87 | X | - | |
PSO-PGSWT [19] | 0.1394 | 0.1537 | 19.107 | 4000 | 2.88 | X | - | |
PSO-IPG [19] | 0.1241 | 0.1266 | 13.75 | 4000 | 2.08 | X | - | |
DE [24] | 0.1246 | - | - | 25,000 | - | X | - | |
GSA [29] | 0.1161 | - | - | 20,000 | - | X | - | |
QOTLBO [33] | 0.1242 | 0.1245 | - | 10,000 | - | X | - | |
TLBO [33] | 0.1252 | 0.1254 | - | 10,000 | - | X | - | |
BA [44] | 0.1191 | - | 94.65 | 4000 | 10.29 | X | - | |
GWO [44] | 0.118 | - | 104.29 | 4000 | 11.34 | X | - | |
ABC [44] | 0.1161 | - | 105.04 | 8000 | 11.42 | X | - | |
ALO [44] | 0.1161 | - | 97.92 | 4000 | 10.64 | X | - |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 22.376 | 24.9062 | 21.4 | 6000 | 1.00 | X | 100 | |
ICOA | 22.383 | 25.046 | 21.8 | 6000 | X | 100 | ||
WCA | 26.0402 | 26.5319 | 27.4 | 6000 | 1.05 | X | 100 | |
SSA | 25.3854 | 27.0306 | 21.8 | 6000 | 1.02 | X | 88 | |
SFOA | 26.6541 | 28.4249 | 21.3 | 6000 | 1.00 | X | 67 | |
COA | 24.5358 | 26.8983 | 23.2 | 6000 | 1.08 | X | 74 | |
SGA [14] | 23.836 | - | 18,000 | - | X | - | ||
ALC-PSO [17] | 23.39 | 23.41 | 300.78 | 30,000 | 15.40 | X | - | |
PSO [21] | 24.7742 | - | 927 | 100,000 | 39.71 | - | - | |
ICA [21] | 24.1607 | - | 1018 | 100,000 | 43.61 | - | - | |
HPSO-ICA [21] | 24.1386 | - | 1450 | 100,000 | 62.11 | - | - | |
SGA [37] | 25.64 | 26.8378 | - | - | - | - | - | |
PSO [37] | 25.03 | 26.4742 | - | - | - | - | - | |
has [37] | 24.9059 | 26.9653 | - | - | - | - | - | |
KHA [38] | 23.41 | - | 303.15 | 10,000 | 15.52 | X | - | |
CKHA [38] | 23.38 | - | 301.12 | 10,000 | 15.42 | X | - | |
DSA [43] | 23.35 | - | - | 200,000 | - | X | - | |
GSA [45] | 24.4922 | - | - | - | - | X | - | |
PSO [45] | 24.3826 | - | - | - | - | X | - | |
CSA [45] | 24.2619 | - | - | - | - | X | - | |
WCA [46] | 24.82 | - | - | - | - | X | - | |
GBBWCA [46] | 23.27 | - | - | - | - | X | - | |
MFO [48] | 24.25293 | - | - | 9000 | - | X | - | |
MOGWA [49] | 21.171 | - | - | - | - | - | - | |
GSA [29] | 23.46 | - | 321.4872 | 16.46 | X | - | ||
SGA [37] | 25.64 | 26.8378 | - | - | - | - | - | |
PSO [37] | 25.03 | 26.4742 | - | - | - | - | - | |
HAS [37] | 24.9059 | 26.9653 | - | - | - | - | - |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
ICOA | 0.6051 | 0.7436 | 20.4 | 6000 | 1.00 | X | 100 | |
ICOA | 0.6155 | 0.7488 | 21 | 6000 | - | X | 100 | |
WCA | 0.7309 | 0.7913 | 27.2 | 6000 | 1.33 | X | 100 | |
SSA | 0.94 | 1.1736 | 20.9 | 6000 | 1.02 | X | 84 | |
SFO | 0.7913 | 0.9975 | 21.1 | 6000 | 1.03 | X | 70 | |
COA | 0.6711 | 0.8198 | 22.8 | 6000 | 1.12 | X | 72 | |
ALC-PSO [17] | 0.6634 | 0.6636 | 400.39 | 30,000 | 21.51 | X | - | |
KHA [38] | 0.6605 | - | 398.49 | 5000 | 21.41 | X | - | |
CKHA [38] | 0.6484 | - | 395.11 | 5000 | 21.22 | X | - | |
DSA [43] | 0.6589 | - | - | 100,000 | - | X | - | |
WCA [46] | 0.6631 | - | - | 50,000 | - | X | - | |
GBBWCA [46] | 0.6501 | - | - | 50,000 | - | X | - |
Method | Min. | Avg. | Average Time (s) | CV | DV | SR (%) |
---|---|---|---|---|---|---|
ICOA | 0.25169 | 0.26368 | 23.6 | X | 96 | |
ICOA | 0.2583 | 0.2654 | 24.02 | X | 92 | |
WCA | 0.2789 | 0.2824 | 29.6 | X | 95 | |
SSA | 0.29 | 0.2991 | 24.1 | X | 74 | |
SFO | 0.2831 | 0.2939 | 23.8 | X | 61 | |
COA | 0.2757 | 0.2808 | 25.1 | X | 63 |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 114.8036 | 122.192 | 92.22 | 8000 | 1.00 | X | 94 | |
ICOA | 114.8623 | 123.764 | 93.6 | 8000 | X | 90 | ||
WCA | 118.3207 | 126.0165 | 129.34 | 8000 | 1.40 | X | 90 | |
SSA | 125.7288 | 131.4492 | 93.66 | 8000 | 1.02 | X | 65 | |
SFOA | 125.6801 | 129.0715 | 102.58 | 8000 | 1.11 | X | 57 | |
COA | 132.3341 | 137.7484 | 121.91 | 8000 | 1.32 | X | 52 | |
COA1 | 123.6867 | 128.4266 | 107.04 | 8000 | 1.16 | X | 90 | |
COA2 | 126.0426 | 130.8728 | 115.96 | 8000 | 1.26 | X | 64 | |
SARCGA [10] | 113.12 | 113.968 | - | 9000 | - | X | - | |
CLPSO [16] | 130.96 | - | - | 24,000 | - | X | - | |
PSO [16] | 131.99 | - | - | 24,000 | - | X | - | |
PSO-AIW [19] | 116.8976 | 118.2344 | 109.645 | 8000 | 1.30 | X | - | |
PSO-AAC [19] | 124.334 | 129.7494 | 96.32 | 8000 | 1.14 | X | - | |
SPSO-AAC [19] | 116.203 | 117.3553 | 96.45 | 8000 | 1.15 | X | - | |
PSO-CF [19] | 115.647 | 116.9863 | 95.86 | 8000 | 1.14 | X | - | |
PSO-PG [19] | 116.608 | 119.3968 | 96.11 | 8000 | 1.14 | X | - | |
PSO-SWT [19] | 124.1476 | 129.371 | 91.58 | 8000 | 1.09 | X | - | |
PGSWTPSO [19] | 119.427 | 122.781 | 95.17 | 8000 | 1.13 | X | - | |
PSO-IPG [19] | 115.06 | 116.462 | 91.07 | 8000 | 1.08 | X | - | |
QOTLBO [33] | 112.2789 | 113.7693 | - | 10,000 | - | X | - | |
TLBO [33] | 116.4003 | 121.3902 | - | 10,000 | - | X | - | |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 0.1605 | 0.2741 | 92.66 | 8000 | 1.00 | X | 92 | |
ICOA | 0.1608 | 0.2764 | 93.42 | 8000 | - | X | 93 | |
WCA | 0.2315 | 0.352345 | 126.37 | 8000 | 1.36 | X | 92 | |
SSA | 0.4883 | 0.582 | 93.66 | 8000 | 1.01 | X | 62 | |
SFOA | 0.6061 | 0.7848 | 102.58 | 8000 | 1.11 | X | 57 | |
COA | 0.2034 | 0.34003 | 121.91 | 8000 | 1.32 | X | 53 | |
COA1 | 0.1928 | 0.275772 | 107.04 | 8000 | 1.16 | X | 91 | |
COA2 | 0.1936 | 0.296056 | 115.96 | 8000 | 1.25 | X | 70 | |
CLPSO [16] | 1.6177 | - | - | 24,000 | - | X | - | |
PSO [16] | 2.2359 | - | - | 24,000 | - | X | - | |
PSO-AIW [19] | 0.1935 | 0.2291 | 78.49 | 8000 | 0.93 | X | - | |
PSO-AAC [19] | 0.3921 | 0.4724 | 78.7 | 8000 | 0.93 | X | - | |
SPSO-AAC [19] | 0.2074 | 0.2498 | 74.9 | 8000 | 0.89 | X | - | |
PSO-CF [19] | 0.1801 | 0.2143 | 78.13 | 8000 | 0.92 | X | - | |
PSO-PG [19] | 0.1658 | 0.2084 | 51.24 | 8000 | 0.61 | X | - | |
PSO-SWT [19] | 0.1658 | 0.2084 | 51.24 | 8000 | 0.61 | X | - | |
PSO-PGSWT [19] | 0.2355 | 0.2755 | 114.5 | 8000 | 1.35 | X | - | |
PSO-IPG [19] | 0.162 | 0.1923 | 47.86 | 8000 | 0.57 | X | - | |
QOTLBO [33] | 0.191 | 0.2043 | - | 10,000 | - | X | - | |
TLBO [33] | 0.2237 | 0.2306 | - | 10,000 | - | X | - |
Method | Min. | Avg. | Average Time (s) | Nsqe | Ti (pu) | CV | DV | SR (%) |
---|---|---|---|---|---|---|---|---|
ICOA | 0.06061 | 0.0608 | 100.05 | 8000 | 1 | X | 90 | |
ICOA | 0.06064 | 0.0610 | 102.8 | 8000 | - | X | 90 | |
WCA | 0.060731 | 0.061371 | 132.32 | 8000 | 1.32 | X | 87 | |
SSA | 0.0639 | 0.0655 | 104.07 | 8000 | 1.04 | X | 59 | |
SFOA | 0.0619 | 0.0644 | 108.53 | 8000 | 1.08 | X | 54 | |
COA | 0.06123 | 0.06303 | 139.75 | 8000 | 1.40 | X | 48 | |
COA1 | 0.06072 | 0.062112 | 117.45 | 8000 | 1.17 | X | 88 | |
COA2 | 0.06077 | 0.062221 | 123.40 | 8000 | 1.23 | X | 67 | |
CLPSO [16] | 0.0965 | - | - | 24,000 | - | X | - | |
PSO [16] | 0.1388 | - | - | 24,000 | - | X | - | |
PSO-AIW [19] | 0.0606 | 0.0607 | 119.66 | 8000 | 1.31 | X | - | |
PSO-AAC [19] | 0.0607 | 0.0609 | 119.22 | 8000 | 1.31 | X | - | |
SPSO-AAC [19] | 0.0607 | 0.0608 | 119.16 | 8000 | 1.31 | X | - | |
PSO-CF [19] | 0.0606 | 0.0607 | 119.86 | 8000 | 1.31 | X | - | |
PSO-PG [19] | 0.0654 | 0.0656 | 119.65 | 8000 | 1.31 | X | - | |
PSO-SWT [19] | 0.0587 | 0.0608 | 58.45 | 8000 | 0.64 | X | - | |
PSO-PGSWT [19] | 0.0574 | 0.0605 | 56.43 | 8000 | 0.62 | X | - | |
PSO-IPG [19] | 0.0568 | 0.0569 | 55.62 | 8000 | 0.61 | X | - | |
QOTLBO [33] | 0.0608 | 0.0631 | - | 10,000 | - | X | - | |
TLBO [33] | 0.0613 | 0.0626 | - | 10,000 | - | X | - |
Study Case | Min | Avg. | Average Time (s) | Nsqe | CV | DV |
---|---|---|---|---|---|---|
TPL | 111.2344 | 115.433 | 92.4 | 8000 | X | |
112.211 | 115.768 | 94.0 | 8000 | X | ||
TVD | 0.1561 | 0.217 | 92.8 | 8000 | X | |
0.1606 | 0.228 | 94.2 | 8000 | X | ||
L index | 0.5678 | 0.6042 | 99.8 | 8000 | X | |
0.5694 | 0.6103 | 101.8 | 8000 | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kien, L.C.; Hien, C.T.; Nguyen, T.T. Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers. Appl. Sci. 2021, 11, 5378. https://doi.org/10.3390/app11125378
Kien LC, Hien CT, Nguyen TT. Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers. Applied Sciences. 2021; 11(12):5378. https://doi.org/10.3390/app11125378
Chicago/Turabian StyleKien, Le Chi, Chiem Trong Hien, and Thang Trung Nguyen. 2021. "Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers" Applied Sciences 11, no. 12: 5378. https://doi.org/10.3390/app11125378
APA StyleKien, L. C., Hien, C. T., & Nguyen, T. T. (2021). Optimal Reactive Power Generation for Transmission Power Systems Considering Discrete Values of Capacitors and Tap Changers. Applied Sciences, 11(12), 5378. https://doi.org/10.3390/app11125378