How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Land Use Transfer Matrix
2.3.2. Generating Land Use Structure Using the Markov Chain Model
2.3.3. Land Use Pattern Simulation Using Patch-Generating Land Use Simulation Model (PLUS)
2.3.4. Coupling Mechanism of Markov Chain and the PLUS Model
2.3.5. Model Validation
3. Results
3.1. Dynamics of Land Use/Land Cover Change from 1990 to 2015
3.2. Driving Factors and Changes in Land Use/Land Cover
3.3. Simulation of Future Land Use/Land Cover Pattern
4. Discussion
4.1. Analysis of Historical Land Use/Land Cover Change
4.2. Analysis of Factors Driving Land Use Change
4.3. Analysis of Future Land Use Change
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | LULC Types | ||||||
---|---|---|---|---|---|---|---|
Forest | Grassland | Cropland | Wetland | Water | Urban | Unused | |
1990a | 10,894.89 | 5444.06 | 6241.79 | 1097.86 | 1535.64 | 116.39 | 35.53 |
2000a | 7471.05 | 4136.14 | 11,262.80 | 809.2 | 1536.48 | 138.51 | 11.99 |
2010a | 7388.28 | 3997.21 | 11,166.21 | 1025.61 | 1551.55 | 209.73 | 25.15 |
2015a | 4322.12 | 4816.66 | 13,446.27 | 888.22 | 1521.3 | 363.29 | 5.88 |
Land Use Type | 1990 | |||||||
---|---|---|---|---|---|---|---|---|
Forest | Grassland | Cropland | Wetland | Water | Urban | Unused | ||
2000 | Forest | 5154.44 | 668.79 | 1431.09 | 181.15 | 23.37 | 10.73 | 1.47 |
Grassland | 648.83 | 2952.7 | 376.11 | 130.75 | 8.38 | 5.96 | 13.41 | |
Cropland | 4956.47 | 1763.28 | 4404.05 | 103.53 | 12.85 | 2.41 | 20.21 | |
Wetland | 69.93 | 44.47 | 18.53 | 651.5 | 24.68 | 0.09 | 0 | |
Water | 21.2 | 7.58 | 10.7 | 30.65 | 1466.35 | 0.01 | 0 | |
Urban | 38.06 | 1.84 | 1.32 | 0.09 | 0 | 97.19 | 0.01 | |
Unused | 5.97 | 5.39 | 0 | 0.19 | 0.01 | 0 | 0.43 |
Land Use Type | 2000 | |||||||
---|---|---|---|---|---|---|---|---|
Forest | Grassland | Cropland | Wetland | Water | Urban | Unused | ||
2010 | Forest | 4341.84 | 335.90 | 2632.37 | 58.35 | 16.38 | 2.65 | 1.41 |
Grassland | 468.12 | 2745.70 | 744.76 | 20.97 | 6.57 | 1.74 | 9.50 | |
Cropland | 2415.23 | 921.74 | 7707.01 | 89.41 | 21.01 | 12.14 | 0.01 | |
Wetland | 185.71 | 83.43 | 107.60 | 619.57 | 29.30 | 0.24 | 0.43 | |
Water | 34.05 | 12.18 | 22.19 | 20.64 | 1463.13 | 0.00 | 0.00 | |
Urban | 24.51 | 16.03 | 47.16 | 0.24 | 0.05 | 121.74 | 0.00 | |
Unused | 1.59 | 21.16 | 1.72 | 0.02 | 0.03 | 0.00 | 0.63 |
Land Use Type | 2010 | |||||||
---|---|---|---|---|---|---|---|---|
Forest | Grassland | Cropland | Wetland | Water | Urban | Unused | ||
2015 | Forest | 3325.70 | 174.22 | 770.47 | 35.38 | 11.25 | 3.65 | 1.45 |
Grassland | 686.89 | 2745.16 | 1275.38 | 77.66 | 9.18 | 2.37 | 20.02 | |
Cropland | 3268.39 | 1022.97 | 8919.06 | 180.68 | 38.21 | 13.63 | 3.33 | |
Wetland | 67.73 | 24.01 | 58.26 | 711.41 | 26.47 | 0.30 | 0.03 | |
Water | 13.45 | 7.15 | 14.81 | 19.71 | 1466.12 | 0.01 | 0.04 | |
Urban | 25.72 | 23.49 | 123.21 | 0.71 | 0.32 | 189.73 | 0.11 | |
Unused | 0.41 | 0.20 | 5.02 | 0.05 | 0.00 | 0.04 | 0.16 |
Appendix B
References
- Iiyama, M.; Mukuralinda, A.; Ndayambaje, J.D.; Musana, B.; Ndoli, A.; Mowo, J.G.; Garrity, D.; Ling, S.; Ruganzu, V. Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management Strategies—Evidence from Rwanda. Sustainability 2018, 10, 1360. [Google Scholar] [CrossRef] [Green Version]
- Goldewijk, K.K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Popul. Environ. 2005, 26, 343–367. [Google Scholar] [CrossRef]
- NISR. Rwanda Population and Housing Census 2012; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2015. [Google Scholar]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2018, 18, 247–259. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Betru, T.; Tolera, M.; Sahle, K.; Kassa, H. Trends and drivers of land use/land cover change in Western Ethiopia. Appl. Geogr. 2019, 104, 83–93. [Google Scholar] [CrossRef]
- Degife, A.; Worku, H.; Gizaw, S.; Legesse, A. Land use land cover dynamics, its drivers and environmental implications in Lake Hawassa Watershed of Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 14, 178–190. [Google Scholar] [CrossRef]
- Wieland, R.; Lakes, T.; Yunfeng, H.; Nendel, C. Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 2019, 83, 543–559. [Google Scholar]
- Karamage, F.; Zhang, C.; Fang, X.; Liu, T.; Ndayisaba, F.; Nahayo, L.; Kayiranga, A.; Nsengiyumva, J.B. Modeling Rainfall-Runoff Response to Land Use and Land Cover Change in Rwanda (1990–2016). Water 2017, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wei, X. Deforestation, forestation, and water supply. Science 2021, 371, 990–991. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Correia-Álvarez, E. Mire microclimate: Groundwater buffers temperature in waterlogged versus dry soils. Int. J. Climatol. 2021, 41, E2949–E2958. [Google Scholar] [CrossRef]
- Bizimana, C. Population pressure and farm fragmentation: Challenges facing agriculture in Rwanda. Rwanda J. 2009, 17, 82–105. [Google Scholar]
- Bizoza, A.R.; Havugimana, J.M. Land use consolidation in Rwanda: A case study of Nyanza district, Southern province. Int. J. Sustain. Land Use Urban Plan. 2013, 1, 64–75. [Google Scholar] [CrossRef]
- Chigbu, U.E.; Ntihinyurwa, P.D.; de Vries, W.T.; Ngenzi, E.I. Why Tenure Responsive Land-Use Planning Matters: Insights for Land Use Consolidation for Food Security in Rwanda. Int. J. Environ. Res. Public Health 2019, 16, 1354. [Google Scholar] [CrossRef] [Green Version]
- Muyombano, E.; Espling, M. Land use consolidation in Rwanda: The experiences of small-scale farmers in Musanze District, Northern Province. Land Use Policy 2020, 99, 105060. [Google Scholar] [CrossRef]
- Kathiresan, A. Farm Land Use Consolidation in Rwanda; Ministry of Agriculture and Animal Resources: Kigali, Rwanda, 2012.
- Nilsson, P. The role of land use consolidation in improving crop yields among farm households in Rwanda. J. Dev. Stud. 2019, 55, 1726–1740. [Google Scholar] [CrossRef] [Green Version]
- Bizuhoraho, T.; Kayiranga, A.; Manirakiza, N.; Mourad, K.A. The effect of land use systems on soil properties; A case study from Rwanda. Sustain. Agric. Res. 2018, 7, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Wasige, J.E.; Groen, T.A.; Rwamukwaya, B.M.; Tumwesigye, W.; Smaling, E.M.A.; Jetten, V. Contemporary land use/land cover types determine soil organic carbon stocks in south-west Rwanda. Nutr. Cycl. Agroecosyst. 2014, 100, 19–33. [Google Scholar] [CrossRef]
- Berakhi, R.O.; Oyana, T.J.; Adu-Prah, S. Land use and land cover change and its implications in Kagera river basin, East Africa. Afr. Geogr. Rev. 2015, 34, 209–231. [Google Scholar] [CrossRef]
- Akinyemi, F.O. Land change in the central Albertine rift: Insights from analysis and mapping of land use-land cover change in north-western Rwanda. Appl. Geogr. 2017, 87, 127–138. [Google Scholar] [CrossRef]
- NISR. Fourth Population and Housing Census, Rwanda, 2012. In Population Size, Structure and Distribution; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2014. [Google Scholar]
- RCMRD. Rwanda Land Cover Maps. Available online: http://geoportal.rcmrd.org/layers/servir%3Arwanda_landcover_2000_scheme_i_1 (accessed on 5 December 2020).
- USGS. ASTER Global Digital Elevation Model V003. Available online: https://earthexplorer.usgs.gov/ (accessed on 5 December 2020).
- Li, C.; Li, Z.; Yang, M.; Ma, B.; Wang, B. Grid-Scale Impact of Climate Change and Human Influence on Soil Erosion within East African Highlands (Kagera Basin). Int. J. Environ. Res. Public Health 2021, 18, 2775. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- WorldPop. Africa Continental Population Datasets. Available online: https://www.worldpop.org/ (accessed on 6 March 2021).
- NISR. Rwanda Major Waterways. Available online: http://www.statistics.gov.rw/ (accessed on 6 March 2021).
- RCMRD. Rwanda Major Towns. Available online: http://geoportal.rcmrd.org/layers/servir%3Arwanda_major_towns (accessed on 13 November 2020).
- AFDB. National Roads of Rwanda. Available online: www.afdb.org/en (accessed on 13 November 2020).
- Zhang, B.; Zhang, Q.; Feng, C.; Feng, Q.; Zhang, S. Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta. Land 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Markov, A.A. Investigation of a noteworthy case of dependent trials. Izv. Akad. Nauk. Ser. Biol. 1907, 1, 181–203. [Google Scholar]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- De Walque, D.; Verwimp, P. The demographic and socio-economic distribution of excess mortality during the 1994 genocide in Rwanda. J. Afr. Econ. 2010, 19, 141–162. [Google Scholar] [CrossRef]
- RWFA. Forest Investment Program for Rwanda; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2017. [Google Scholar]
- Ndayambaje, J.; Mohren, G. Fuelwood demand and supply in Rwanda and the role of agroforestry. Agrofor. Syst. 2011, 83, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Cizungu, L.; Staelens, J.; Huygens, D.; Walangululu, J.; Muhindo, D.; Van Cleemput, O.; Boeckx, P. Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. For. Ecol. Manag. 2014, 326, 109–116. [Google Scholar] [CrossRef]
- Izabiliza, J. The role of women in reconstruction: Experience of Rwanda. In Proceedings of the Consultation on Empowering Women in the Great Lakes Region: Violence, Peace and Women’s Leadership, Addis Ababa, Ethiopia, 30 May–1 June 2005. [Google Scholar]
- Kaindaneh, P.M.; Ntabana, I. Towards Inclusive Green Growth in Rwanda Costing of Investments in Agriculture and Natural Resources; REMA: Kigali, Rwanda, 2014.
- REMA. National Land Policy; Rwanda Environment Management Authority: Kigali, Rwanda, 2004.
- Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Chidamba, L.; Korsten, L. Pyrosequencing analysis of roof-harvested rainwater and river water used for domestic purposes in Luthengele village in the Eastern Cape Province of South Africa. Environ. Monit. Assess. 2015, 187, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-temporal dynamics of critical ecosystem services in response to agricultural expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Rufangura, P.; Jayaweera, M.; Owusu, P.A. Situational analysis of flood and drought in Rwanda. Int. J. Sci. Eng. Res. 2017, 6, 960–970. [Google Scholar] [CrossRef]
- Tuyishime, O.; Joel, A.; Messing, I.; Naramabuye, F.; Sankaranarayanan, M.; Wesström, I. Effects of drainage intensity on water and nitrogen use efficiency and rice grain yield in a semi-arid marshland in Rwanda. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 578–593. [Google Scholar] [CrossRef]
- Mutimura, M.; Dusengemungu, L.; Bernard, M.; Gahakwa, D.; Ebong, C. Household Characteristics and Livelihood Strategies for Beef Enterprise Development in Eastern Province of Rwanda. J. Anim. Vet. Adv. 2014, 13, 644–651. [Google Scholar]
- Rawlins, R.; Pimkina, S.; Barrett, C.B.; Pedersen, S.; Wydick, B. Got milk? The impact of Heifer International’s livestock donation programs in Rwanda on nutritional outcomes. Food Policy 2014, 44, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Mukuralinda, A.; Ndayambaje, J.D.; Iiyama, M.; Ndoli, A.; Musana, B.; Garrity, D.P.; Ling, S. Taking to Scale Tree-Based Systems in Rwanda to Enhance Food Security, Restore Degraded Land, Improve Resilience to Climate Change and Sequester Carbon; PROFOR: Washington, DC, USA, 2016. [Google Scholar]
LULC Type after Reclassification | Original RCMRD LULC Type |
---|---|
Forest | Dense Forest |
Moderate Forest | |
Sparse Forest | |
Woodland | |
Grassland | Closed Grassland |
Open Grassland | |
Closed Shrubland | |
Open Shrubland | |
Cropland | Perennial Cropland |
Annual Cropland | |
Wetland | Wetland |
Water | Water Body |
Urban | Settlement |
Unused | Otherland |
Land Use Type | 1990 | |||||||
---|---|---|---|---|---|---|---|---|
Forest | Grassland | Cropland | Wetland | Water | Urban | Unused | ||
2015 | Forest | 3370.27 | 301.13 | 612.11 | 29.87 | 5.51 | 2.05 | 1.13 |
Grassland | 1226.14 | 2940.45 | 502.29 | 117.45 | 5.72 | 0.86 | 23.74 | |
Cropland | 6065.24 | 2081.78 | 5034.99 | 220.50 | 27.56 | 5.62 | 10.48 | |
Wetland | 84.89 | 50.92 | 11.80 | 703.26 | 36.87 | 0.39 | 0.03 | |
Water | 21.12 | 9.75 | 6.45 | 24.83 | 1459.11 | 0.01 | 0.00 | |
Urban | 124.41 | 59.37 | 70.56 | 1.18 | 0.19 | 107.42 | 0.15 | |
Unused | 2.00 | 0.47 | 3.34 | 0.03 | 0.00 | 0.04 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, M.; Li, Z.; Wang, B. How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate? Appl. Sci. 2021, 11, 5376. https://doi.org/10.3390/app11125376
Li C, Yang M, Li Z, Wang B. How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate? Applied Sciences. 2021; 11(12):5376. https://doi.org/10.3390/app11125376
Chicago/Turabian StyleLi, Chaodong, Mingyi Yang, Zhanbin Li, and Baiqun Wang. 2021. "How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate?" Applied Sciences 11, no. 12: 5376. https://doi.org/10.3390/app11125376
APA StyleLi, C., Yang, M., Li, Z., & Wang, B. (2021). How Will Rwandan Land Use/Land Cover Change under High Population Pressure and Changing Climate? Applied Sciences, 11(12), 5376. https://doi.org/10.3390/app11125376