Design of a Semi-Active Prosthetic Knee for Transfemoral Amputees: Gait Symmetry Research by Simulation
Abstract
:Featured Application
Abstract
1. Introduction
- (1)
- A novel prosthetic knee structure operated in semi-active mode was presented.
- (2)
- The semi-active prosthetic knee could provide similar torque and angle of the biological knee in the simulation.
- (3)
- The gait symmetry of the prosthetic knee was realized by simulation.
2. Materials and Methods
2.1. The Division of Human Gait Cycle
- (1)
- The structure should have the ability to simulate the biological knee motion.
- (2)
- The active torque and passive damping should be provided alternately.
- (3)
- The weight, size, and energy consumption should be reduced compared to powered prostheses.
2.2. Bio-Inspired Design of the Knee Joint
2.3. Design of the Semi-Active Prosthetic Knee
2.4. Mathematical Model of the Hydraulic Damping and Active Torque
2.5. Simulation Process
2.6. Performance Evaluation Parameters
- (1)
- Symmetry Index (SI)
- (2)
- Ratio I
- (3)
- Ratio II
3. Results
3.1. Symmetry of Knee Torque
3.2. Symmetry of Knee Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekrater-Bodmann, R. Factors Associated With Prosthesis Embodiment and Its Importance for Prosthetic Satisfaction in Lower Limb Amputees. Front. Neurorobot. 2021, 14, 604376. [Google Scholar] [CrossRef]
- Cao, W.J.; Yu, H.L.; Zhao, W.L.; Li, J.; Wei, X.D. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion. Technol. Health Care 2018, 26, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Chaparro-Rico, B.D.M.; Cafolla, D. Test-retest, inter-rater and intra-rater reliability for spatiotemporal gait parameters using SANE (an eaSy gAit aNalysis systEm) as measuring instrument. Appl. Sci. 2020, 10, 5781. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.D.M.; Cafolla, D.; Castillo-Castaneda, E.; Ceccarelli, M. Design of arm exercises for rehabilitation assistance. J. Eng. Res. Kuwait 2020, 8, 203–218. [Google Scholar] [CrossRef]
- Hutabarat, Y.; Ekkachai, K.; Hayashibe, M.; Kongprawechnon, W. Reinforcement Q-Learning Control with Reward Shaping Function for Swing Phase Control in a Semi-active Prosthetic Knee. Front. Neurorobot. 2020, 14, 565702. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; Frittoli, S.; Frigo, C.A. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin. Biomech. 2012, 27, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Hafner, B.J.; Askew, R.L. Physical performance and self-report outcomes associated with use of passive, adaptive, and active prosthetic knees in persons with unilateral, transfemoral amputation: Randomized crossover trial. J. Rehabil. Res. Dev. 2015, 52, 677–699. [Google Scholar] [CrossRef]
- Chin, T.; Sawamura, S.; Shiba, R.; Oyabu, H.; Nagakura, Y.; Takase, I.; Machida, K.; Nakagawa, A. Effect of an intelligent prosthesis (IP) on the walking ability of young transfemoral amputees—Comparison of IP users with able-bodied people. Am. J. Phys. Med. Rehabil. 2003, 82, 447–451. [Google Scholar] [CrossRef]
- Lura, D.J.; Wernke, M.M.; Carey, S.L.; Kahle, J.T.; Miro, R.M.; Highsmith, M.J. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Clin. Biomech. 2015, 30, 175–181. [Google Scholar] [CrossRef]
- Bellmann, M.; Kohler, T.M.; Schmalz, T. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations. Biomed. Eng. Biomed. Tech. 2019, 64, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.; Dillon, M.P.; Shiell, A. A systematic review of health economic evaluations in orthotics and prosthetics: Part 1-prosthetics. Prosthet. Orthot. Int. 2020, 45, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Lawson, B.E.; Mitchell, J.E.; Truex, D.; Shultz, A.; Ledoux, E.; Goldfarb, M. A robotic leg prosthesis: Design, control, and implementation. IEEE Robot. Autom. Mag. 2014, 21, 70–81. [Google Scholar] [CrossRef]
- Khademi, G.; Simon, D. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis. IEEE Trans. Biomed. Eng. 2021, 68, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Elery, T.; Rezazadeh, S.; Nesler, C.; Gregg, R.D. Design and Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators. IEEE Trans. Robot. 2020, 36, 1649–1668. [Google Scholar] [CrossRef] [PubMed]
- Mendez, J.; Hood, S.; Gunnel, A.; Lenzi, T. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles. Sci. Robot. 2020, 5, eaba6635. [Google Scholar] [CrossRef] [PubMed]
- Stolyarov, R.; Carney, M.; Herr, H. Accurate Heuristic Terrain Prediction in Powered Lower-Limb Prostheses Using Onboard Sensors. IEEE Trans. Biomed. Eng. 2021, 68, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Lansade, C.; Chiesa, G.; Paysant, J.; Vicaut, E.; Cristina, M.C.; Menager, D. Impact of C-LEG on mobility, satisfaction and quality of life in a multicenter cohort of femoral amputees. Ann. Phys. Rehabil. Med. 2021, 64, 101386. [Google Scholar] [CrossRef]
- Thiele, J.; Schollig, C.; Bellmann, M.; Kraft, M. Designs and performance of three new microprocessor-controlled knee joints. Biomed. Eng. Biomed. Tech. 2019, 64, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Elery, T.; Rezazadeh, S.; Reznick, E.; Gray, L.; Gregg, R.D. Effects of a Powered Knee-Ankle Prosthesis on Amputee Hip Compensations: A Case Series. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2944–2954. [Google Scholar] [CrossRef]
- Lambrecht, B.G.A.; Kazerooni, H. Design of a Semi-Active Knee Prosthesis. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 4097–4103. [Google Scholar] [CrossRef]
- Pillai, M.V.; Kazerooni, H.; Hurwich, A. Design of a Semi-Active Knee-Ankle Prosthesis. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 5293–5300. [Google Scholar] [CrossRef]
- Awad, M.; Dehghani, A.; Moser, D.; Zahedi, S. Dynamic Coupling Characteristics of a Semi-Active Knee Prosthesis. In Proceedings of the Conference on Climbing and Walking Robots (CLAWAR), Sydney, Australia, 14–17 July 2013; pp. 43–50. [Google Scholar]
- Park, J.; Yoon, G.H.; Kang, J.W.; Choi, S.B. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Mater. Struct. 2016, 25, 085009. [Google Scholar] [CrossRef]
- Cao, W.; Yu, H.; Chen, W.; Meng, Q.; Chen, C. Design and evaluation of a novel microprocessor-controlled prosthetic knee. IEEE Access 2019, 7, 178553–178562. [Google Scholar] [CrossRef]
- Cao, W.; Yu, H.; Meng, Q.; Li, S. Plantar pressure analysis of Above-knee Amputee with a Developed Microprocessor-controlled Prosthetic Knee. Acta Bioeng. Biomech. 2018, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhao, W.; Yu, H.; Chen, W.; Meng, Q. Maximum swing flexion or gait symmetry: A comparative evaluation of control targets on metabolic energy expenditure of amputee using intelligent prosthetic knee. BioMed Res. Int. 2018, 2018, 2898546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jason HMKahle, J.T.; Wernke, M.M.; Carey, S.L.; Miro, R.M.; Lura, D.J.; Sutton, B.S. Effects of The Genium Knee System on Functional Level, Stair Ambulation, Perceptive and Economic Outcomes in Transfemoral Amputees. Technol. Innov. 2016, 18, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D.H. The evolution of clinical gait analysis: Part II Kinematics. Gait Posture 2002, 16, 159–179. [Google Scholar] [CrossRef]
- Aslani, N.; Noroozi, S.; Yee, K.S.; Chao, A.O.Z.; Maggs, C. Simulation of gait asymmetry and energy transfer efficiency between unilateral and bilateral amputees. Sports Eng. 2016, 19, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Pagel, A.; Arieta, A.H.; Riener, R.; Vallery, H. Effects of sensory augmentation on postural control and gait symmetry of transfemoral amputees: A case description. Med. Biol. Eng. Comput. 2015, 54, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Karaharju-Huisnan, T.; Taylor, S.; Begg, R.; Cai, J.; Best, R. Gait symmetry quantification during treadmill walking. In Proceedings of the Seventh Australian and New Zealand Intelligent Information Systems Conference, Perth, Australia, 18–21 November 2001; pp. 203–206. [Google Scholar]
Parameters | Numerical Value |
---|---|
Bore sizes of cylinder () | |
Diameter of lower piston rod () | |
Diameter of upper piston rod () | |
Inner diameter of piston rod () | |
Piston rod length () | |
Piston rod length () | |
Hydraulic cylinder length () | |
Hydraulic fluid density () | |
Flow coefficient () |
Body Paragraph | Size/mm | Quality/Kg | Mass Center/mm | |
---|---|---|---|---|
Head and neck | 323.7 | 5.9 | 127.8 | 32,866.1 |
Truncus | 523 | 30 | 235.4 | 447,026.8 |
Arms | 696.3 | 3.5 | 359.1 | 16,403.8 |
Left thigh | 489.2 | 9.8 | 362.3 | 163,719.1 |
Left leg | 395.6 | 3.1 | 230.6 | 25,751.1 |
Right thigh (amputation) | 244.2 | 4.9 | 180.8 | 81,859.5 |
Stump socket | 245 | 0.3 | 122.5 | 1311.4 |
Prosthetic knee | 187.7 | 1.4 | 109.4 | 11,629.5 |
Crus tube | 207.9 | 0.8 | 103.5 | 3497.1 |
Left feet/Right false feet | 257.2 | 0.9 | 39 | 3934.3 |
Item Type | Gait Phase | |||
---|---|---|---|---|
Torque | Stance | −9.9% | 1.01 | 0.35 |
Swing | 3.7% | 0.77 | −0.46 |
Item Type | Gait Phase | |||
---|---|---|---|---|
Angle | Stance | 34.7% | 1.38 | 0.29 |
Swing | 11.5% | 1.16 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yu, H.; Cao, W.; Wang, X.; Meng, Q.; Chen, C. Design of a Semi-Active Prosthetic Knee for Transfemoral Amputees: Gait Symmetry Research by Simulation. Appl. Sci. 2021, 11, 5328. https://doi.org/10.3390/app11125328
Zhang Z, Yu H, Cao W, Wang X, Meng Q, Chen C. Design of a Semi-Active Prosthetic Knee for Transfemoral Amputees: Gait Symmetry Research by Simulation. Applied Sciences. 2021; 11(12):5328. https://doi.org/10.3390/app11125328
Chicago/Turabian StyleZhang, Zhewen, Hongliu Yu, Wujing Cao, Xiaoming Wang, Qiaoling Meng, and Chunjie Chen. 2021. "Design of a Semi-Active Prosthetic Knee for Transfemoral Amputees: Gait Symmetry Research by Simulation" Applied Sciences 11, no. 12: 5328. https://doi.org/10.3390/app11125328
APA StyleZhang, Z., Yu, H., Cao, W., Wang, X., Meng, Q., & Chen, C. (2021). Design of a Semi-Active Prosthetic Knee for Transfemoral Amputees: Gait Symmetry Research by Simulation. Applied Sciences, 11(12), 5328. https://doi.org/10.3390/app11125328