Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications
Abstract
:1. Introduction
2. Methods and Samples
2.1. Phase 1: Parameter Selection and Model Protocol
2.2. Phase 2: GAN-Augmented Sampling and Model Testing
3. Results
3.1. Phase 1: Parameter Selection and Model Protocol
3.2. Phase 2: GAN-Augmented Sampling and Model Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domínguez-Rodrigo, M.; Cifuentes-Alcobendas, G.; Jiménez-García, B.; Abellán, N.; Pizarro-Monzo, M.; Organista, E.; Baquedano, E. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Sci. Rep. 2020, 10, 18862. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes-Alcobendas, G.; Domínguez-Rodrigo, M. Deep learning and taphonomy: High accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks. Sci. Rep. 2019, 9, 18933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro-Monzo, M.; Domínguez-Rodrigo, M. Dynamic modification of cut marks by trampling: Temporal assessment through the use of mixed-effect regressions and deep learning methods. Archaeol. Anthropol. Sci. 2020, 12, 4. [Google Scholar] [CrossRef]
- Abellán, N.; Jiménez-García, B.; Aznarte, J.; Baquedano, E.; Domínguez-Rodrigo, M. Deep learning classification of tooth scores made by different carnivores: Achieving high accuracy when comparing African carnivore taxa and testing the hominin shift in the balance of power. Archaeol. Anthropol. Sci. 2021, 13, 31. [Google Scholar] [CrossRef]
- Jiménez-García, B.; Aznarte, J.; Abellán, N.; Baquedano, E.; Domínguez-Rodrigo, M. Deep learning improves taphonomic resolution: High accuracy in differentiating tooth marks made by lions and jaguars. J. R. Soc. Interface 2020, 17, 20200446. [Google Scholar] [CrossRef]
- Jiménez-García, B.; Abellán, N.; Baquedano, E.; Cifuentes-Alcobendas, G.; Domínguez-Rodrigo, M. Corrigendum to “Deep learning improves taphonomic resolution: High accuracy in differentiating tooth marks made by lions and jaguars”. J. R. Soc. Interface 2020, 17, 20200782. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning Publications Company: New York, NY, USA, 2017; p. 361. ISBN 9781617294433. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Mikolajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar]
- Zhang, W.; Kinoshita, Y.; Kiya, H. Image-Enhancement-Based Data Augmentation for Improving Deep Learning in Image Classification Problem. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27, pp. 2672–2680. [Google Scholar]
- Langr, J.; Bok, V. GANs in Action: Deep learning with Generative Adversarial Networks; Manning Publications Company: New York, NY, USA, 2019; ISBN 9781617295560. [Google Scholar]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yuan, P.; Sun, Y. MM-GAN: 3D MRI Data Augmentation for Medical Image Segmentation via Generative Adversarial Networks. In Proceedings of the 2020 IEEE International Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; pp. 227–234. [Google Scholar]
- Lan, L.; You, L.; Zhang, Z.; Fan, Z.; Zhao, W.; Zeng, N.; Chen, Y.; Zhou, X. Generative Adversarial Networks and Its Applications in Biomedical Informatics. Front Public Health 2020, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Qu, H.; Zhang, Y.; Sabuncu, M.; Chen, C.; Zhang, T.; Metaxas, D.N. Synthetic learning: Learn from distributed asynchronized discriminator gan without sharing medical image data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 13–19 June 2020; pp. 13856–13866. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 9780262337373. [Google Scholar]
- Domínguez-Rodrigo, M.; de Juana, S.; Galán, A.B.; Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 2009, 36, 2643–2654. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras; Machine Learning Mastery. 2017. Available online: https://books.google.rs/books/about/Deep_Learning_With_Python.html?id=K-ipDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false (accessed on 3 June 2021).
- Brownlee, J. Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions; Machine Learning Mastery. 2018. Available online: https://books.google.rs/books/about/Better_Deep_Learning.html?id=T1-nDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false (accessed on 3 June 2021).
- Eger, S.; Youssef, P.; Gurevych, I. Is it Time to Swish? Comparing Deep Learning Activation Functions Across NLP tasks. arXiv 2019, arXiv:1901.02671. [Google Scholar]
- Jinsakul, N.; Tsai, C.-F.; Tsai, C.-E.; Wu, P. Enhancement of Deep Learning in Image Classification Performance Using Xception with the Swish Activation Function for Colorectal Polyp Preliminary Screening. Sci. China Ser. A Math. 2019, 7, 1170. [Google Scholar] [CrossRef] [Green Version]
- Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Nagarajan, R.; Scutari, M.; Lèbre, S. Bayesian Networks in R; Springer: New York, NY, USA, 2013; pp. 122, 125–127. [Google Scholar]
- Scutari, M.; Denis, J.-B. Bayesian Networks: With Examples in R; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781482225587. [Google Scholar]
- Hong, Y.; Niu, L.; Zhang, J.; Zhao, W.; Fu, C.; Zhang, L. F2GAN: Fusing-and-Filling GAN for Few-shot Image Generation. In Proceedings of the 28th ACM International Conference on Multimedia; Association for Computing Machinery: New York, NY, USA, 2020; pp. 2535–2543. ISBN 9781450379885. [Google Scholar]
- Antoniou, A.; Storkey, A.; Edwards, H. Data Augmentation Generative Adversarial Networks. arXiv 2017, arXiv:1711.04340. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Bourgeon, L.; Burke, A.; Higham, T. Earliest Human Presence in North America Dated to the Last Glacial Maximum: New Radiocarbon Dates from Bluefish Caves, Canada. PLoS ONE 2017, 12, e0169486. [Google Scholar] [CrossRef] [Green Version]
- Gommery, D.; Ramanivosoa, B.; Faure, M.; Guérin, C.; Kerloc’h, P.; Sénégas, F.; Randrianantenaina, H. Les plus anciennes traces d’activités anthropiques de Madagascar sur des ossements d’hippopotames subfossiles d’Anjohibe (Province de Mahajanga). Comptes Rendus Palevol 2011, 10, 271–278. [Google Scholar] [CrossRef]
- Anderson, A.; Clark, G.; Haberle, S.; Higham, T.; Nowak-Kemp, M.; Prendergast, A.; Radimilahy, C.; Rakotozafy, L.M.; Ramilisonina, L.M.; Schwenninger, J.-L.; et al. New evidence of megafaunal bone damage indicates late colonization of Madagascar. PLoS ONE 2018, 13, e0204368. [Google Scholar] [CrossRef] [PubMed]
- Hansford, J.; Wright, P.C.; Rasoamiaramanana, A.; Pérez, V.R.; Godfrey, L.R.; Errickson, D.; Thompson, T.; Turvey, S.T. Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna. Sci. Adv. 2018, 4, eaat6925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espigares, M.P.; Patrocinio Espigares, M.; Palmqvist, P.; Guerra-Merchán, A.; Ros-Montoya, S.; García-Aguilar, J.M.; Rodríguez-Gómez, G.; Serrano, F.J.; Martínez-Navarro, B. The earliest cut marks of Europe: A discussion on hominin subsistence patterns in the Orce sites (Baza basin, SE Spain). Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wolpert, D.H. The Existence of A Priori Distinctions Between Learning Algorithms. Neural Comput. 1996, 8, 1391–1420. [Google Scholar] [CrossRef]
Model | Function | Optimizer | Accuracy | Loss | F1-Score |
---|---|---|---|---|---|
VGG16 | |||||
relu | SGD | 95.83 | 0.214 | 0.73 | |
swish | SGD | 95.83 | 0.286 | 0.67 | |
mish | SGD | 95.31 | 0.245 | 0.67 | |
relu | Adam | 96.35 | 0.247 | 0.65 | |
swish | Adam | 95.31 | 0.246 | 0.77 | |
mish | Adam | 96.35 | 0.258 | 0.69 | |
Densenet 201 | |||||
relu | SGD | 94.27 | 0.2 | 0.67 | |
swish | SGD | 93.75 | 0.206 | 0.63 | |
mish | SGD | 95.31 | 0.185 | 0.67 | |
relu | Adam | 95.31 | 0.162 | 0.71 | |
swish | Adam | 93.75 | 0.224 | 0.64 | |
mish | Adam | 89.06 | 0.395 | 0.65 | |
Jason2 | |||||
relu | SGD | 96.35 | 0.133 | 0.69 | |
swish | SGD | 95.38 | 0.16 | 0.7 | |
mish | SGD | 96.35 | 0.126 | 0.68 | |
relu | Adam | 94.79 | 0.194 | 0.76 | |
swish | Adam | 93.75 | 0.224 | 0.69 | |
mish | Adam | 95.83 | 0.212 | 0.71 | |
Resnet 50 | |||||
relu | SGD | 97.92 | 0.112 | 0.8 | |
swish | SGD | 98.44 | 0.058 | 0.77 | |
mish | SGD | 97.92 | 0.104 | 0.69 | |
relu | Adam | 95.83 | 0.124 | 0.76 | |
swish | Adam | 97.4 | 0.074 | 0.71 | |
mish | Adam | 97.92 | 0.147 | 0.67 |
Result = BEST | |||
optimizer | function | ||
mish | relu | swish | |
Adam | 0 | 0.25 | 0.125 |
SGD | 0 | 0.125 | 0 |
Result = GOOD | |||
optimizer | function | ||
mish | relu | swish | |
Adam | 0 | 0 | 0 |
SGD | 0.125 | 0.25 | 0.125 |
Result = NORMAL | |||
optimizer | function | ||
mish | relu | swish | |
Adam | 0.5 | 0.25 | 0.375 |
SGD | 0.375 | 0.125 | 0.375 |
Activation Function | Optimizer | Accuracy | Loss | F1-Score | |
---|---|---|---|---|---|
VGG16 | relu | SGD | 87.02 | 0.49 | 0.84 |
swish | SGD | 90.82 | 0.37 | 0.84 | |
mish | SGD | 84.6 | 0.56 | 0.84 | |
relu | Adam | 89.18 | 0.40 | 0.80 | |
swish | Adam | 83.41 | 0.77 | 0.74 | |
mish | Adam | 88.2 | 0.64 | 0.81 | |
Densenet201 | relu | SGD | 81.73 | 0.57 | 0.81 |
swish | SGD | 83.04 | 0.53 | 0.81 | |
mish | SGD | 82.37 | 0.47 | 0.80 | |
relu | Adam | 83.26 | 0.52 | 0.81 | |
swish | Adam | 81.03 | 0.66 | 0.81 | |
mish | Adam | 82.37 | 0.48 | 0.81 | |
Jason 2 | relu | SGD | 88.99 | 0.49 | 0.83 |
swish | SGD | 80.29 | 1.07 | 0.71 | |
mish | SGD | 80.5 | 0.54 | 0.72 | |
relu | Adam | 86.5 | 0.36 | 0.84 | |
swish | Adam | 69.1 | 1.16 | 0.64 | |
mish | Adam | 57.1 | 2.26 | 0.55 | |
ResNet50 | relu | SGD | 88.17 | 0.42 | 0.84 |
swish | SGD | 89.96 | 0.29 | 0.84 | |
mish | SGD | 89.06 | 0.32 | 0.84 | |
relu | Adam | 91.18 | 0.24 | 0.83 | |
swish | Adam | 91.29 | 0.29 | 0.87 | |
mish | Adam | 87.28 | 0.50 | 0.84 |
Site | Tooth Mark | Cut Mark | Trampling Mark | Classification |
---|---|---|---|---|
Bluefish Caves | 0.21 | 0.302 | 0.486 | trampling |
Dik 53-3-D | 0.215 | 0.309 | 0.474 | trampling |
Dik 53-3-E | 0.19 | 0.338 | 0.468 | trampling |
Dik 53-3-H | 0.213 | 0.295 | 0.491 | trampling |
Dik 53-3-I | 0.211 | 0.298 | 0.495 | trampling |
FuenteNueva 3 | 0.481 | 0.215 | 0.303 | tooth mark |
FuenteNueva 3 | 0.215 | 0.306 | 0.477 | trampling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Rodrigo, M.; Fernández-Jaúregui, A.; Cifuentes-Alcobendas, G.; Baquedano, E. Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications. Appl. Sci. 2021, 11, 5237. https://doi.org/10.3390/app11115237
Domínguez-Rodrigo M, Fernández-Jaúregui A, Cifuentes-Alcobendas G, Baquedano E. Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications. Applied Sciences. 2021; 11(11):5237. https://doi.org/10.3390/app11115237
Chicago/Turabian StyleDomínguez-Rodrigo, Manuel, Ander Fernández-Jaúregui, Gabriel Cifuentes-Alcobendas, and Enrique Baquedano. 2021. "Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications" Applied Sciences 11, no. 11: 5237. https://doi.org/10.3390/app11115237
APA StyleDomínguez-Rodrigo, M., Fernández-Jaúregui, A., Cifuentes-Alcobendas, G., & Baquedano, E. (2021). Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications. Applied Sciences, 11(11), 5237. https://doi.org/10.3390/app11115237