Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. dTDLAS Methodology
2.2. Optics Design
2.3. Uncertainty Estimation
3. Static Validation with a Dew Point Mirror and Spectroscopic Performance
4. Conclusions and Outlook to the Airborne Application
4.1. Next Steps
4.2. Outlook to the Airborne Instrument
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiehl, J.T.; Trenberth, K.E. Earth’s Annual Global Mean Energy Budget. Bull. Amer. Meteor. Soc. 1997, 78, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Ludlam, F.H. Clouds and Stormshere; Pennsylvania State University Press: University Park, MD, USA, 1980; ISBN 02-710-05157. [Google Scholar]
- Wendisch, M.; Brenguier, J.-L. Airborne Measurements for Environmental Research: Methods and Instruments; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 978-3-527-40996-9. [Google Scholar]
- Ohtaki, E.; Matsui, T. Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorol. 1982, 24, 109–119. [Google Scholar] [CrossRef]
- Chatterjee, D.; Nayak, A.K.; Vijayakumar, S.; Debnath, M.; Chatterjee, S.; Swain, C.K.; Bihari, P.; Mohanty, S.; Tripathi, R.; Shahid, M.; et al. Water vapor flux in tropical lowland rice. Environ. Monit. Assess. 2019, 191, 550. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, R.L.; MacPherson, J.I.; Schuepp, P.H.; Karanja, F. An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorol. 1989, 47, 55–69. [Google Scholar] [CrossRef]
- Brilouet, P.-E.; Durand, P.; Canut, G. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements. J. of Geophys. Res. Atmos. 2017, 122, 2115–2130. [Google Scholar] [CrossRef]
- Lampert, A.; Hartmann, J.; Pätzold, F.; Lobitz, L.; Hecker, P.; Kohnert, K.; Larmanou, E.; Serafimovich, A.; Sachs, T. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour. Atmos. Meas. Tech. 2018, 11, 2523–2536. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, B.; Afchine, A.; Klein, A.; Schiller, C.; Krämer, M.; Ebert, V. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: Background, design, setup, and first flight data. Atmos. Meas. Tech. 2017, 10, 35–57. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, B.; Böse, N.; Ebert, V. Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl. Phys. B 2014, 116, 883–899. [Google Scholar] [CrossRef]
- Buchholz, B.; Kallweit, S.; Ebert, V. SEALDH-II-An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design-Setup-Accuracy/Stability Stress Test. Sensors 2016, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Busen, R.; Buck, A.L. A High-Performance Hygrometer for Aircraft Use: Description, Installation, and Flight Data. J. Atmos. Oceanic Technol. 1995, 12, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Helten, M.; Smit, H.G.J.; Sträter, W.; Kley, D.; Nedelec, P.; Zöger, M.; Busen, R. Calibration and performance of automatic compact instrumentation for the measurement of relative humidity from passenger aircraft. J. Geophys. Res. 1998, 103, 25643–25652. [Google Scholar] [CrossRef]
- Meyer, J.; Rolf, C.; Schiller, C.; Rohs, S.; Spelten, N.; Afchine, A.; Zöger, M.; Sitnikov, N.; Thornberry, T.D.; Rollins, A.W.; et al. Two decades of water vapor measurements with the FISH fluorescence hygrometer: A review. Atmos. Chem. Phys. 2015, 15, 8521–8538. [Google Scholar] [CrossRef] [Green Version]
- Sargent, M.R.; Sayres, D.S.; Smith, J.B.; Witinski, M.; Allen, N.T.; Demusz, J.N.; Rivero, M.; Tuozzolo, C.; Anderson, J.G. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere. Rev. Sci. Instrum. 2013, 84, 74102. [Google Scholar] [CrossRef]
- Tátrai, D.; Bozóki, Z.; Smit, H.; Rolf, C.; Spelten, N.; Krämer, M.; Filges, A.; Gerbig, C.; Gulyás, G.; Szabó, G. Dual-channel photoacoustic hygrometer for airborne measurements: Background, calibration, laboratory and in-flight intercomparison tests. Atmos. Meas. Tech. 2015, 8, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Beaton, S.P.; Spowart, M. UV Absorption Hygrometer for Fast-Response Airborne Water Vapor Measurements. J. Atmos. Ocean. Technol. 2012, 29, 1295–1303. [Google Scholar] [CrossRef]
- Kley, D.; Russell, J.M.; Phillips, C. WCRP, 113. SPARC assessment of upper tropospheric and stratospheric water vapour. World Meteorol. Organ. Geneva 2000, 1043, 113. [Google Scholar]
- Fahey, D.W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L.M.; et al. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques. Atmos. Meas. Tech. 2014, 7, 3177–3213. [Google Scholar] [CrossRef] [Green Version]
- Diskin, G.S.; Podolske, J.R.; Sachse, G.W.; Slate, T.A. Open-path airborne tunable diode laser hygrometer. In Proceeding SPIE 4817; Diode Lasers and Applications in Atmospheric Sensing: Seattle, WA, USA; International Society for Optics and Photonics: Ringham, WA, USA, 2002; pp. 196–204. [Google Scholar]
- May, R.D. Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O. J. Geophys. Res. 1998, 103, 19161–19172. [Google Scholar] [CrossRef]
- Roths, J.; Busen, R. Development of a laser in situ airborne hygrometer (LISAH). Infrared Phys. Technol. 1996, 37, 33–38. [Google Scholar] [CrossRef]
- Zondlo, M.A.; Paige, M.E.; Massick, S.M.; Silver, J.A. Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- MISSION DLR Portal. DLR Research Aircraft HALO. Available online: https://www.dlr.de/content/en/missions/halo.html (accessed on 29 April 2021).
- Buchholz, B. Entwicklung, Primärvalidierung und Feldeinsatz neuartiger, kalibrierungsfreier Laser-Hygrometer für Forschungsflugzeuge; TU Darmstadt: Darmstadt, Germany, 2014. [Google Scholar]
- Tuzson, B.; Mangold, M.; Looser, H.; Manninen, A.; Emmenegger, L. Compact multipass optical cell for laser spectroscopy. Opt. Lett. OL 2013, 38, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Ebert, V.; Wolfrum, J. Absorption. In Optical Measurements: Techniques and Applications, 2nd ed.; Mayinger, F., Feldmann, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 231–270. ISBN 978-3-642-63079-8. [Google Scholar]
- Hanson, R.K.; Spearrin, R.M.; Goldenstein, C.S. Spectroscopy and Optical Diagnostics for Gases, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 9783319232522. [Google Scholar]
- Teichert, H.; Fernholz, T.; Ebert, V. Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. AO 2003, 42, 2043–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunsmann, S.; Wagner, S.; Saathoff, H.; Möhler, O.; Schurath, U.; Ebert, V. Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4µm-Band. In VDI-Berichte 1959; VDI-Verlag: Düsseldorf, Germany, 2006. [Google Scholar]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.-P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef] [Green Version]
- Nwaboh, J.A.; Werhahn, O.; Ebert, V. H2O collisional broadening coefficients and their temperature dependence: A metrology approach. Appl. Sci. 2021. in review. [Google Scholar]
- Pogány, A.; Klein, A.; Ebert, V. Measurement of water vapor line strengths in the 1.4–2.7 µm range by tunable diode laser absorption spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2015, 165, 108–122. [Google Scholar] [CrossRef]
- Rollins, A.W.; Thornberry, T.D.; Gao, R.S.; Smith, J.B.; Sayres, D.S.; Sargent, M.R.; Schiller, C.; Krämer, M.; Spelten, N.; Hurst, D.F.; et al. Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission. J. Geophys. Res. Atmos. 2014, 119, 1915–1935. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Georgin, E.; Bubser, F.; Deschermeier, R.; Ebert, V. Metrology of Transient Humidity Measurements: Dynamic Generation and Measurement of Humidity. In Proceedings of the TEMPMEKO 2019, Chengdu, China, 10–14 June 2019. [Google Scholar]
- Witt, F.; Bubser, F.; Ebert, V.; Bergmann, D. C9.1 Temporal Hygrometer Characterization: Design and First Test of a New, Metrological Dynamic Testing Infrastructure. In System of Units and Metreological Infrastructure; SMSI 2021, digital, 5/3/2021–5/6/2021; AMA Service GmbH: Wunstorf, Germany, 2021; pp. 308–309. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witt, F.; Nwaboh, J.; Bohlius, H.; Lampert, A.; Ebert, V. Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements. Appl. Sci. 2021, 11, 5189. https://doi.org/10.3390/app11115189
Witt F, Nwaboh J, Bohlius H, Lampert A, Ebert V. Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements. Applied Sciences. 2021; 11(11):5189. https://doi.org/10.3390/app11115189
Chicago/Turabian StyleWitt, Felix, Javis Nwaboh, Henning Bohlius, Astrid Lampert, and Volker Ebert. 2021. "Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements" Applied Sciences 11, no. 11: 5189. https://doi.org/10.3390/app11115189
APA StyleWitt, F., Nwaboh, J., Bohlius, H., Lampert, A., & Ebert, V. (2021). Towards a Fast, Open-Path Laser Hygrometer for Airborne Eddy Covariance Measurements. Applied Sciences, 11(11), 5189. https://doi.org/10.3390/app11115189