Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Binders
2.1.2. Aggregates
2.2. Experimental Procedure
2.2.1. Resonant Fatigue Test
2.2.2. Post-Processing Experimental Results
2.2.3. Mix Design
3. Results and Discussion
3.1. Fatigue Limit
3.2. Strain Evolution Test
3.3. Frequency Evolution
3.4. Correlation between Strain and Frequency during a Resonance Fatigue Test
3.5. Morphological Analysis of Fractures
4. Conclusions
- In the mixtures studied, the resonant fatigue limit was between 30 and 45% of the compressive strength.
- The fatigue results had a large scatter, and no direct influence on the resonant compressive fatigue limit was observed due to the presence of mix recycled aggregate.
- The presence of mixed recycled aggregates in the concretes increased the strain recorded during the resonance compressive fatigue tests. The presence of recycled cement did not affect the strain values.
- The resonance frequencies were lower in the concretes with MRA because the stiffness of the system provided by the presence of MRA increased the strain suffered by the specimen.
- For all cases, it was observed that during resonance fatigue tests with constant load cycles, as the strain increased, the resonance frequency decreased.
- In the compressive resonance fatigue tests, the unmixed MRA specimens exhibited fracture planes across the paste–aggregate interface. While the specimens with MRA showed cracks through the recycled concrete aggregates and pulverisation of the ceramic fractions.
- The strength of all the concretes was similar. The presence of mixed recycled aggregates had a greater effect on the dynamic response (increased strain and decreased resonance frequency) than the presence of recycled cement, which did not show any influence on the dynamic response.
- The characterisation in resonant fatigue allowed a reduction in test durations and the comparison of the fatigue life of different types of recycled concrete, even with recycled cement. However, the dispersion obtained in the results suggests that the more heterogeneous concretes are more sensitive to resonant fatigue. For this reason, for recycled concretes, the method does not seem directly comparable with the classical methods of static characterisation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards Sustainable Concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J.M. Green Concrete Containing Diatomaceous Earth and Limestone: Workability, Mechanical Properties, and Life-Cycle Assessment. J. Clean. Prod. 2019, 223, 662–679. [Google Scholar] [CrossRef]
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Impacts of Booming Concrete Production on Water Resources Worldwide. Nat. Sustain. 2018, 1, 69–76. [Google Scholar] [CrossRef]
- Miller, S.A. Supplementary Cementitious Materials to Mitigate Greenhouse Gas Emissions from Concrete: Can There Be Too Much of a Good Thing? J. Clean. Prod. 2018, 178, 587–598. [Google Scholar] [CrossRef]
- European Commission. Towards a Circular Economy: A Zero Waste Programme for Europe; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Cantero, B.; Sáez del Bosque, I.F.; Matías, A.; Medina, C. Statistically Significant Effects of Mixed Recycled Aggregate on the Physical-Mechanical Properties of Structural Concretes. Constr. Build. Mater. 2018, 185, 93–101. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Mechanical Performance of Concrete Made with Aggregates from Construction and Demolition Waste Recycling Plants. J. Clean. Prod. 2015, 99, 59–74. [Google Scholar] [CrossRef]
- Medina, C.; Zhu, W.; Howind, T.; Frías, M.; Sánchez de Rojas, M.I. Effect of the Constituents (Asphalt, Clay Materials, Floating Particles and Fines) of Construction and Demolition Waste on the Properties of Recycled Concretes. Constr. Build. Mater. 2015, 79, 22–33. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; Sánchez de Juan, M. Durability of Recycled Aggregate Concrete. Constr. Build. Mater. 2013, 40, 1054–1065. [Google Scholar] [CrossRef]
- Cantero, B.; del Bosque, I.F.S.; Matías, A.; de Rojas, M.I.S.; Medina, C. Water Transport Mechanisms in Concretes Bearing Mixed Recycled Aggregates. Cem. Concr. Compos. 2020, 107, 103486. [Google Scholar] [CrossRef]
- Debieb, F.; Courard, L.; Kenai, S.; Degeimbre, R. Mechanical and Durability Properties of Concrete Using Contaminated Recycled Aggregates. Cem. Concr. Compos. 2010, 32, 421–426. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of Recycled Aggregate Concrete—A Review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Majhi, R.K.; Nayak, A.N.; Mukharjee, B.B. Development of Sustainable Concrete Using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag. Constr. Build. Mater. 2018, 159, 417–430. [Google Scholar] [CrossRef]
- Çakır, Ö. Experimental Analysis of Properties of Recycled Coarse Aggregate (RCA) Concrete with Mineral Additives. Constr. Build. Mater. 2014, 68, 17–25. [Google Scholar] [CrossRef]
- Cantero, B.; Sáez del Bosque, I.F.; Matías, A.; Sánchez de Rojas, M.I.; Medina, C. Inclusion of Construction and Demolition Waste as a Coarse Aggregate and a Cement Addition in Structural Concrete Design. Arch. Civ. Mech. Eng. 2019, 19, 1338–1352. [Google Scholar] [CrossRef]
- Thomas, C.; Cimentada, A.I.; Cantero, B.; Sáez del Bosque, I.F.; Polanco, J.A. Industrial Low-Clinker Precast Elements Using Recycled Aggregates. Appl. Sci. 2020, 10, 6655. [Google Scholar] [CrossRef]
- Cantero, B.; Bravo, M.; de Brito, J.; Sáez del Bosque, I.F.; Medina, C. Mechanical Behaviour of Structural Concrete with Ground Recycled Concrete Cement and Mixed Recycled Aggregate. J. Clean. Prod. 2020, 275, 122913. [Google Scholar] [CrossRef]
- Duan, Z.; Singh, A.; Xiao, J.; Hou, S. Combined Use of Recycled Powder and Recycled Coarse Aggregate Derived from Construction and Demolition Waste in Self-Compacting Concrete. Constr. Build. Mater. 2020, 254, 119323. [Google Scholar] [CrossRef]
- Beltran, M.G.; Agrela, F.; Barbudo, A.; Ayuso, J.; Ramirez, A. Mechanical and Durability Properties of Concretes Manufactured with Biomass Bottom Ash and Recycled Coarse Aggregates. Constr. Build. Mater. 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Agrela, F.; Beltran, M.G.; Cabrera, M.; López, M.; Rosales, J.; Ayuso, J. Properties of Recycled Concrete Manufacturing with All-in Recycled Aggregates and Processed Biomass Bottom Ash. Waste Biomass Valorization 2018, 9, 1247–1259. [Google Scholar] [CrossRef]
- Breccolotti, M.; Bonfigli, M.F. Fatigue Behaviour and Damage Accumulation in RAC Subjected to Cyclic Compressive Loadings. Constr. Build. Mater. 2020, 259, 120408. [Google Scholar] [CrossRef]
- Mínguez, J.; Gutiérrez, L.; González, D.C.; Vicente, M.A. Plain and Fiber-Reinforced Concrete Subjected to Cyclic Compressive Loading: Study of the Mechanical Response and Correlations with Microstructure Using CT Scanning. Appl. Sci. 2019, 9, 3030. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Li, H.; Yang, Z. Fatigue Behavior of Recycled Aggregate Concrete under Compression and Bending Cyclic Loadings. Constr. Build. Mater. 2013, 38, 681–688. [Google Scholar] [CrossRef]
- Calderón, L.S.; Bairán, J. Semi-automatic detection and measurement of cracks in concrete elements in digital photos using image processing. Hormig. Acero 2020, 71, 21–27. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Lombillo, I.; Cimentada, A. Fatigue Limit of Recycled Aggregate Concrete. Constr. Build. Mater. 2014, 52, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Sosa, I.; Setién, J.; Polanco, J.A.; Cimentada, A.I. Evaluation of the Fatigue Behavior of Recycled Aggregate Concrete. J. Clean. Prod. 2014, 65, 397–405. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; de Brito, J.; Fiol, F. Micro- and Macro-Porosity of Dry- and Saturated-State Recycled Aggregate Concrete. J. Clean. Prod. 2019, 211, 932–940. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y. Integrated Interface Parameters of Recycled Aggregate Concrete. Constr. Build. Mater. 2015, 101, 861–877. [Google Scholar] [CrossRef]
- Sainz-aja, J.; Thomas, C.; Carrascal, I.; Polanco, J.A.; Brito, J. De Fast Fatigue Method for Self-Compacting Recycled Aggregate Concrete Characterization. J. Clean. Prod. 2020, 123263. [Google Scholar] [CrossRef]
- Helland, S. Design for Service Life: Implementation of Fib Model Code 2010 Rules in the Operational Code ISO 16204. Struct. Concr. 2013, 14, 10–18. [Google Scholar] [CrossRef]
- Sainz-Aja, J.; Thomas, C.; Polanco, J.A.; Carrascal, I. High-Frequency Fatigue Testing of Recycled Aggregate Concrete. Appl. Sci. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Lage, I.; Martínez-Abella, F.; Vázquez-Herrero, C.; Pérez-Ordóñez., J.L. Properties of Plain Concrete Made with Mixed Recycled Coarse Aggregate. Constr. Build. Mater. 2012, 37, 171–176. [Google Scholar] [CrossRef]
- Medina, C.; Zhu, W.; Howind, T.; Sánchez de Rojas, M.I.; Frías, M. Influence of Mixed Recycled Aggregate on the Physical—Mechanical Properties of Recycled Concrete. J. Clean. Prod. 2014, 68, 216–225. [Google Scholar] [CrossRef]
- Mas, B.; Cladera, A.; del Olmo, T.; Pitarch, F. Influence of the Amount of Mixed Recycled Aggregates on the Properties of Concrete for Non-Structural Use. Constr. Build. Mater. 2012, 27, 612–622. [Google Scholar] [CrossRef]
- Cantero, B.; Bravo, M.; de Brito, J.; Sáez del Bosque, I.F.; Medina, C. Water Transport and Shrinkage in Concrete Made with Ground Recycled Concrete-Additioned Cement and Mixed Recycled Aggregate. Cem. Concr. Compos. 2021, 103957. [Google Scholar] [CrossRef]
- Alexandridou, C.; Angelopoulos, G.N.; Coutelieris, F.A. Mechanical and Durability Performance of Concrete Produced with Recycled Aggregates from Greek Construction and Demolition Waste Plants. J. Clean. Prod. 2018, 176, 745–757. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Durability Performance of Concrete with Recycled Aggregates from Construction and Demolition Waste Plants. Constr. Build. Mater. 2015, 77, 357–369. [Google Scholar] [CrossRef]
- European Comision. Construction and Demolition Waste Protocol; European Comision: Brussels, Belgium, 2016. [Google Scholar]
- Tang, Q.; Ma, Z.; Wu, H.; Wang, W. The Utilization of Eco-Friendly Recycled Powder from Concrete and Brick Waste in New Concrete: A Critical Review. Cem. Concr. Compos. 2020, 114, 103807. [Google Scholar] [CrossRef]
- Costa, C.; Marques, J.C. Feasibility of Eco-Friendly Binary and Ternary Blended Binders Made of Fly-Ash and Oil-Refinery Spent Catalyst in Ready-Mixed Concrete Production. Sustainability 2018, 10, 3136. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 197. Cement. Part. 1: Composition, Specifications and Conformity Criteria for Common Cements; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- Sánchez, M.I.; de Rojas, M.F.; Asensio, C.E. Medina Sanitary Ware Waste for Cements Manufacture, Obtention Proceeding and Cements That Are Included, PCT/ES2014/070406. 2014. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2014188034 (accessed on 6 May 2021).
- European Committee for Standardization. EN 933. Tests for Geometrical Properties of Aggregates—Part. 11: Classification Test. for the Constituents of Coarse Recycled Aggregate; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- Comisión Permanente del Hormigón Instrucción Hormigón Estructural. EHE-08 (Spanish Code on Structural Concrete). 2008. Available online: http://asidac.es/asidac-en/wp-content/uploads/2016/07/EHE-ENG.pdf (accessed on 6 May 2021).
- Agrela, F.; Sanchez de Juan, M.; Ayuso, J.; Geraldes, V.L.; Jimenez, J.R. Limiting Properties in the Characterisation of Mixed Recycled Aggregates for Use in the Manufacture of Concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. EN 12620. Aggregates for Concrete; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- European Committee for Standardization. EN 1097. Tests for Mechanical and Physical Properties of Aggregates. Part. 6: Determination of Particle Density and Water Absorption; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- European Committee for Standardization. EN 1097. Tests for Mechanical and Physical Properties of Aggregates. Part. 2: Methods for the Determination of Resistance to Fragmentation; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- European Committee for Standardization. EN 933. Tests for Geometrical Properties of Aggregates. Part. 3: Determination of Particle Shape—Flakiness Index; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- European Committee for Standardization. EN 12390-1 Testing h Rdened Concrete. Part. 1: Shape, Dimensions and Other Requirements for Specimens and Moulds; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- European Committee for Standardization. EN 12390-3 Testing Hardened Concrete. Part. 3: Compressive Strength of Test. Specimens; European Committee for Standardization: Brussels, Belgium, 2020. [Google Scholar]
- European Committee for Standardization. EN 12390-13 Testing Hardened Concrete. Part. 13: Determination of Secant Modulus of Elasticity in Compression; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- García, C.T. Hormigón Reciclado de Aplicación Estructural: Durabilidad En Ambiente Marino y Comportamiento a Fatiga; Universty of Cantabria: Cantabria, Spain, 2012. [Google Scholar]
- Weinstein, S.B.; Ebert, P.M. Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform. IEEE Trans. Commun. Technol. 1971, 19, 628–634. [Google Scholar] [CrossRef]
- Mathworks Fourier Series. n.d. Available online: https://uk.mathworks.com/help/curvefit/fourier.html (accessed on 5 May 2021).
- Sainz-Aja, J.; Pombo, J.; Tholken, D.; Carrascal, I.; Polanco, J.; Ferreño, D.; Casado, J.; Diego, S.; Perez, A.; Filho, J.E.A.A.; et al. Dynamic Calibration of Slab Track Models for Railway Applications Using Full-Scale Testing. Comput. Struct. 2020, 228, 106180. [Google Scholar] [CrossRef]
- Teychenné, D.C.; Franklin, R.E.; Erntroy, H.C. Design of Normal Concrete Mixes; BRE: Watford, North Dakota, 2010; Volume 331, p. 46. [Google Scholar]
- Lantsoght, E.O.L.; Van Der Veen, C.; De Boer, A. Proposal for the Fatigue Strength of Concrete under Cycles of Compression. Constr. Build. Mater. 2016, 107, 138–156. [Google Scholar] [CrossRef]
- Pacheco, J.; de Brito, J.; Chastre, C.; Evangelista, L. Experimental Investigation on the Variability of the Main Mechanical Properties of Concrete Produced with Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 2019, 201, 110–120. [Google Scholar] [CrossRef]
- Carloni, C.; Subramaniam, K.V. Investigation of Sub-Critical Fatigue Crack Growth in FRP/Concrete Cohesive Interface Using Digital Image Analysis. Compos. Part. B Eng. 2013, 51, 35–43. [Google Scholar] [CrossRef]
- Thomas, C.; Sainz-Aja, J.; Setien, J.; Cimentada, A.; Polanco, J.A. Resonance Fatigue Testing on High-Strength Self-Compacting Concrete. J. Build. Eng. 2021, 35, 102057. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Tejchman, J. Experimental Investigations of Damage Evolution in Concrete during Bending by Continuous Micro-CT Scanning. Mater. Charact. 2019, 154, 40–52. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Marzec, I.; Tejchman, J. Fracture Evolution in Concrete Compressive Fatigue Experiments Based on X-Ray Micro-CT Images. Int. J. Fatigue 2019, 122, 256–272. [Google Scholar] [CrossRef]
- Vicente, M.A.; Mínguez, J.; González, D.C. Computed Tomography Scanning of the Internal Microstructure, Crack Mechanisms, and Structural Behavior of Fiber-Reinforced Concrete under Static and Cyclic Bending Tests. Int. J. Fatigue 2019, 121, 9–19. [Google Scholar] [CrossRef]
- Sainz-Aja, J.; Carrascal, I.; Polanco, J.A.; Thomas, C. Fatigue Failure Micromechanisms in Ed Aggregate Mortar by ΜCT Analysis. J. Build. Eng. 2019, 101027. [Google Scholar] [CrossRef]
Material | Chemical Composition (%wt.) | LOI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | TiO2 | P2O5 | Cl- | SiO2 (1) | ||
OPC | 20.00 | 6.03 | 2.57 | 60.00 | 1.75 | 3.90 | 0.56 | 1.49 | 0.15 | 0.15 | 0.02 | - | 3.26 |
RWP-CDW | 59.63 | 18.51 | 5.92 | 4.78 | 3.08 | 0.42 | 0.70 | 3.58 | - | - | - | 35.10 | 2.15 |
OPC-25CDW | 31.30 | 8.26 | 3.24 | 48.99 | 2.86 | 2.43 | 0.51 | 1.58 | 0.35 | 0.19 | 0.04 | - | 2.66 |
Composition (wt%) | MRA-M | MRA-G |
---|---|---|
Ceramic | 7.2 | 10.9 |
Concrete and mortar | 47.0 | 44.0 |
Natural stone | 44.8 | 43.8 |
Bituminous | 0.6 | 0.9 |
Others | 0.4 | 0.4 |
Property | Aggregates | |||||
---|---|---|---|---|---|---|
NA-S | NA-M | NA-C | MRA-M | MRA-G | EN 12620 | |
Dry density (g/cm3) [47] | 2.73 | 2.71 | 2.72 | 2.28 | 2.32 | - |
SSD (1) density (g/cm3) [47] | 2.76 | 2.74 | 2.74 | 2.42 | 2.45 | - |
Water absorption 24 h (%wt.) [47] | 1.18 | 0.88 | 0.78 | 6.28 | 5.27 | ≤5 (≤7) (3) |
Open Porosity (vol%) [47] | 3.2 | 2.4 | 1.9 | 14.3 | 12.2 | |
Los Angeles coefficient (%wt.) [48] | - | 16 | 18 | 32 | 36 | <50 (2) |
Flakiness index (%wt.) [49] | - | 21 | 25 | 10 | 10 | <35 |
Identification | Description |
---|---|
HP | OPC and 100% NA |
HR-25 | OPC and 25% MRA |
HR-50 | OPC and 50% MRA |
HP-R | OPC-25CDW and 100% NA |
HRR-25 | OPC-25CDW and 25% MRA |
HRR-50 | OPC-25CDW and 50% MRA |
Step j | Cycle N | σmin-σ0 [MPa] | σmax-σj [MPa] | Δ [MPa] | σmed [MPa] | Amplitude [MPa] |
---|---|---|---|---|---|---|
1 | 0–1 × 105 | 2.5 | 12.5 | 5.0 | 7.5 | 5.0 |
2 | 1 × 105–2 × 105 | 2.5 | 17.5 | 5.0 | 10.0 | 7.5 |
3 | 2 × 105–3 × 105 | 2.5 | 22.5 | 5.0 | 12.5 | 10.0 |
4 | 3 × 105–4 × 105 | 2.5 | 27.5 | 5.0 | 15.0 | 12.5 |
5 | 4 × 105–5 × 105 | 2.5 | 32.5 | 5.0 | 17.5 | 15.0 |
6 | 5 × 105–6 × 105 | 2.5 | 37.5 | 5.0 | 20.0 | 17.5 |
Material [kg/m3] | Type | |||||
---|---|---|---|---|---|---|
HP | HR-25 | HR-50 | HP-R | HRR-25 | HRR-50 | |
NA-S | 732.36 | 720.79 | 705.38 | 732.36 | 720.79 | 705.38 |
NA-M | 382.96 | 282.69 | 184.43 | 382.96 | 282.69 | 184.43 |
NA-G | 766.69 | 565.94 | 369.22 | 766.69 | 565.94 | 369.22 |
MRA-M | - | 90.75 | 177.62 | - | 90.75 | 177.62 |
MRA-G | - | 182.80 | 357.77 | - | 182.80 | 357.77 |
OPC | 400 | 400 | 400 | - | - | - |
OPC-25CDW | - | - | - | 400 | 400 | 400 |
W | 193.03 | 202.08 | 210.63 | 193.03 | 202.08 | 210.63 |
SP | 6.20 | 6.20 | 6.20 | 6.20 | 6.20 | 6.20 |
(w/c) effective | 0.48 | 0.50 | 0.53 | 0.48 | 0.50 | 0.53 |
Physical and mechanical properties | ||||||
(kg/m3) | 2340 | 2310 | 2290 | 2350 | 2310 | 2240 |
fcd,180 (MPa) | 53.5 | 47.0 | 48.8 | 50.2 | 47.5 | 47.5 |
Material | fcd,180 [MPa] | ΔσL [MPa] | LF [MPa] | IC [%] |
---|---|---|---|---|
HP | 53.5 | 27.5 | 22.0 | 41.12 |
HR25 | 47.0 | 18.4 | 14.8 | 31.49 |
HR50 | 48.8 | 27.5 | 22.0 | 45.08 |
HRR | 50.2 | 25.3 | 20.3 | 40.44 |
HRR25 | 47.5 | 27.5 | 22.0 | 46.32 |
HRR50 | 47.5 | 20.6 | 16.5 | 34.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantero, B.; Sainz-Aja, J.; Yoris, A.; Medina, C.; Thomas, C. Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate. Appl. Sci. 2021, 11, 5045. https://doi.org/10.3390/app11115045
Cantero B, Sainz-Aja J, Yoris A, Medina C, Thomas C. Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate. Applied Sciences. 2021; 11(11):5045. https://doi.org/10.3390/app11115045
Chicago/Turabian StyleCantero, Blas, Jose Sainz-Aja, Adrian Yoris, César Medina, and Carlos Thomas. 2021. "Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate" Applied Sciences 11, no. 11: 5045. https://doi.org/10.3390/app11115045
APA StyleCantero, B., Sainz-Aja, J., Yoris, A., Medina, C., & Thomas, C. (2021). Resonance Fatigue Behaviour of Concretes with Recycled Cement and Aggregate. Applied Sciences, 11(11), 5045. https://doi.org/10.3390/app11115045