Therapeutic Advances in Tendinopathy Quantified Microscopically Using Bonar Score, with a Special Reference to PRP Therapy—A Systematic Review of Experimental Studies
Abstract
:1. Introduction
2. Material and Methods
2.1. Search Strategy
2.2. Eligibility Assessment
2.3. Data Extraction
2.4. Risk-of-Bias Assessment
3. Results
3.1. Study Selection
3.2. The Bonar Score and Its Modifications
3.3. Methodology of Microscopic Investigation
3.4. Therapeutic Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | autologous conditioned serum |
bFGF | basic fibroblast growth factor |
IGF | insulin-like growth factor-1 |
ECM | extracellular matrix |
EPO | erythropoietin |
LHBT | the long head of the biceps tendon |
LMWH | low-molecular-weight heparin |
MSC | mesenchymal stem cells |
PDGF | platelet-derived growth factor |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PRP | platelet-rich plasma |
PTT | posterior tibialis tendon |
SST | supraspinatus tendon |
SYRCLE | Systematic Review Centre for Laboratory animal Experimentation |
TGF-β | transforming growth factor-β |
VEGF | vascular endothelial growth factor |
References
- Güleç, A.; Türk, Y.; Aydin, B.K.; Erkoçak, Ö.F.; Safalı, S.; Ugurluoglu, C. Effect of curcumin on tendon healing: An experimental study in a rat model of Achilles tendon injury. Int. Orthop. 2018, 42, 1905–1910. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Łapaj, Ł.; Paczesny, Ł.; Zabrzyńska, A.; Grzanka, D. Tendon—Function-related structure, simple healing process and mysterious ageing. Folia Morphol. 2018, 77, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 2003, 43, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Kaux, J.-F.; Forthomme, B.; Le Goff, C.; Crielaard, J.-M.; Croisier, J.-L. Current Opinions on Tendinopathy. J. Sports Sci. Med. 2011, 10, 238–253. [Google Scholar]
- Abate, M.; Gravare-Silbernagel, K.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, A.; Backman, L.J.; Speed, C. Tendinopathy: Update on Pathophysiology. J. Orthop. Sports Phys. Ther. 2015, 45, 833–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabrzyński, J.; Gagat, M.; Paczesny, Ł.; Łapaj, Ł.; Grzanka, D. Electron microscope study of the advanced tendinopathy process of the long head of the biceps brachii tendon treated arthroscopically. Folia Morphol. 2018, 77, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Zabrzyński, J.; Paczesny, Ł.; Łapaj, Ł.; Grzanka, D.; Szukalski, J. Process of neovascularisation compared with pain intensity in tendinopathy of the long head of the biceps brachii tendon associated with concomitant shoulder disorders, after arthroscopic treatment. Microscopic evaluation supported by immunohistochemical. Folia Morphol. 2018, 77, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Molloy, T.; Wang, Y.; Murrell, G.A.C. The Roles of Growth Factors in Tendon and Ligament Healing. Sports Med. 2003, 33, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.G.; Loitz, B.J.; Frank, C.B.; Hart, D.A. Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochem. Cell Biol. 1994, 72, 403–409. [Google Scholar] [CrossRef]
- Evans, C.H. Cytokines and the Role They Play in the Healing of Ligaments and Tendons. Sports Med. 1999, 28, 71–76. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, X.; Zhu, T.; Hu, J.-J.; Song, H.-X.; Shen, W.-L.; Jiang, L.-Y.; Heng, B.C.; Ji, J.-F.; Ouyang, H.-W. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater. 2013, 9, 9317–9329. [Google Scholar] [CrossRef]
- Kaux, J.-F.; Drion, P.V.; Colige, A.; Pascon, F.; Libertiaux, V.; Hoffmann, A.; Janssen, L.; Heyers, A.; Nusgens, B.V.; Le Goff, C.; et al. Effects of platelet-rich plasma (PRP) on the healing of Achilles tendons of rats. Wound Repair Regen. 2012, 20, 748–756. [Google Scholar] [CrossRef]
- Di Matteo, B.; Filardo, G.; Kon, E.; Marcacci, M. Platelet-rich plasma: Evidence for the treatment of patellar and Achilles tendinopathy—A systematic review. Musculoskelet. Surg. 2014, 99, 1–9. [Google Scholar] [CrossRef]
- Usuelli, F.G.; Grassi, M.; Maccario, C.; Vigano, M.; Lanfranchi, L.; Montrasio, U.A.; de Girolamo, L. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: Results of a randomized controlled clinical trial at a 6-month follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2000–2010. [Google Scholar] [CrossRef]
- Fukawa, T.; Yamaguchi, S.; Watanabe, A.; Sasho, T.; Akagi, R.; Muramatsu, Y.; Akatsu, Y.; Katsuragi, J.; Endo, J.; Osone, F.; et al. Quantitative Assessment of Tendon Healing by Using MR T2 Mapping in a Rabbit Achilles Tendon Transection Model Treated with Platelet-rich Plasma. Radiology 2015, 276, 748–755. [Google Scholar] [CrossRef] [Green Version]
- Bennardo, F.; Liborio, F.; Barone, S.; Antonelli, A.; Buffone, C.; Fortunato, L.; Giudice, A. Efficacy of platelet-rich fibrin compared with triamcinolone acetonide as injective therapy in the treatment of symptomatic oral lichen planus: A pilot study. Clin. Oral Investig. 2021, 25, 3747–3755. [Google Scholar] [CrossRef]
- Fortunato, L.; Bennardo, F.; Buffone, C.; Giudice, A. Is the application of platelet concentrates effective in the prevention and treatment of medication-related osteonecrosis of the jaw? A systematic review. J. Cranio Maxillofac. Surg. 2020, 48, 268–285. [Google Scholar] [CrossRef]
- Chaudhury, S. Mesenchymal stem cell applications to tendon healing. Muscle Ligaments Tendons J. 2012, 2, 222–229. [Google Scholar]
- Awad, H.A.; Butler, D.L.; Boivin, G.P.; Smith, F.N.; Malaviya, P.; Huibregtse, B.; Caplan, A.I. Autologous Mesenchymal Stem Cell-Mediated Repair of Tendon. Tissue Eng. 1999, 5, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Selek, O.; Buluç, L.; Muezzinoğlu, B.; Ergün, R.E.; Ayhan, S.; Karaöz, E. Mesenchymal stem cell application improves tendon healing via anti-apoptotic effect (Animal study). Acta Orthop. Traumatol. Turc. 2014, 48, 187–195. [Google Scholar] [CrossRef]
- Viganò, M.; Lugano, G.; Orfei, C.P.; Menon, A.; Ragni, E.; Colombini, A.; De Luca, P.; Randelli, P.; De Girolamo, L. Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. Int. Orthop. 2021, 45, 419–426. [Google Scholar] [CrossRef]
- Tofiño-Vian, M.; Guillén, M.I.; Del Caz, M.D.P.; Silvestre, A.; Alcaraz, M.J. Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes. Cell. Physiol. Biochem. 2018, 47, 11–25. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Franceschi, F.; Rabitti, C.; Denaro, V. Movin and Bonar Scores Assess the Same Characteristics of Tendon Histology. Clin. Orthop. Relat. Res. 2008, 466, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Fearon, A.; Dahlstrom, J.E.; Twin, J.; Cook, J.; Scott, A. The Bonar score revisited: Region of evaluation significantly influences the standardized assessment of tendon degeneration. J. Sci. Med. Sport 2014, 17, 346–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, P.M.; Sheth, C.D.; Pauzenberger, L.; McCarthy, M.B.R.; Cote, M.P.; Soneson, E.; Miller, S.; Mazzocca, A.D. Macroscopic Rotator Cuff Tendinopathy and Histopathology Do Not Predict Repair Outcomes of Rotator Cuff Tears. Am. J. Sports Med. 2018, 46, 779–785. [Google Scholar] [CrossRef]
- Is the Inflammation Process Absolutely Absent in Tendinopathy of the Long Head of the Biceps Tendon? Histopathologic Study of the Long Head of the of the Biceps Tendon after Arthroscopic Treatment. 2020. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29517202 (accessed on 3 January 2020).
- Lundgreen, K.; Lian, Ø.B.; Scott, A.; Fearon, A.; Engebretsen, L. 58 Smokers Have Worse Rotator Cuff Teartendon Degeneration and Apoptosis. Br. J. Sports Med. 2014, 48, A37–A38. [Google Scholar] [CrossRef]
- Singaraju, V.M.; Kang, R.W.; Yanke, A.B.; McNickle, A.G.; Lewis, P.B.; Wang, V.M.; Williams, J.M.; Chubinskaya, S.; Romeo, A.A.; Cole, B.J. Biceps tendinitis in chronic rotator cuff tears: A histologic perspective. J. Shoulder Elb. Surg. 2008, 17, 898–904. [Google Scholar] [CrossRef]
- Cook, J.L.; Feller, J.A.; Bonar, S.F.; Khan, K.M. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J. Orthop. Res. 2004, 22, 334–338. [Google Scholar] [CrossRef]
- Aspenberg, P. Stimulation of tendon repair: Mechanical loading, GDFs and platelets. A mini-review. Int. Orthop. 2007, 31, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-Y.; Hua, Y.-H. Achilles Tendinopathy: Current Concepts about the Basic Science and Clinical Treatments. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Beytemür, O.; Yüksel, S.; Tetikkurt, Ü.S.; Genç, E.; Olcay, E.; Güleç, A. Isotretinoin induced achilles tendinopathy: Histopathological and biomechanical evaluation on rats. Acta Orthop. Traumatol. Turc. 2018, 52, 387–391. [Google Scholar] [CrossRef]
- Pingel, J.; Wienecke, J.; Kongsgaard, M.; Behzad, H.; Abraham, T.; Langberg, H.; Scott, A. Increased mast cell numbers in a calcaneal tendon overuse model. Scand. J. Med. Sci. Sports 2013, 23, e353–e360. [Google Scholar] [CrossRef]
- Çıraklı, A. Local application of tranexamic acid affects tendon healing negatively in the late period. Jt. Dis. Relat. Surg. 2018, 29, 20–26. [Google Scholar] [CrossRef]
- Netto, C.D.C.; Godoy-Santos, A.L.; Pontin, P.A.; Natalino, R.J.M.; Pereira, C.A.M.; Lima, F.D.D.O.; Da Fonseca, L.F.; Staggers, J.R.; Cavinatto, L.M.; Schon, L.C.; et al. Novel animal model for Achilles tendinopathy: Controlled experimental study of serial injections of collagenase in rabbits. PLoS ONE 2018, 13, e0192769. [Google Scholar] [CrossRef] [Green Version]
- Genç, E.; Beytemür, O.; Yüksel, S.; Eren, Y.; Çağlar, A.; Küçükyıldırım, B.O.; Gulec, M.A. Investigation of the biomechanical and histopathological effects of autologous conditioned serum on healing of Achilles tendon. Acta Orthop. Traumatol. Turc. 2018, 52, 226–231. [Google Scholar] [CrossRef]
- Eren, Y. Effects of low molecular weight heparin and rivaroxaban on rat Achilles tendon healing. Jt. Dis. Relat. Surg. 2018, 29, 13–19. [Google Scholar] [CrossRef]
- Dincel, Y.M.; Adanir, O.; Arikan, Y.; Caglar, A.K.; Dogru, S.C.; Arslan, Y.Z. Effects of high-dose vitamin C and hyaluronic acid on tendon healing. Acta Ortopédica Bras. 2018, 26, 82–85. [Google Scholar] [CrossRef]
- Aydın, B.K. Effect of Ankaferd blood stopper® on tendon healing: An experimental study in a rat model of Achilles tendon injury. Jt. Dis. Relat. Surg. 2015, 26, 31–37. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, S.M.; Kim, J.E.; Kim, S.H.; Jung, Y. Effect of platelet-rich plasma with self-assembled peptide on the rotator cuff tear model in rat. J. Tissue Eng. Regen. Med. 2015, 11, 77–85. [Google Scholar] [CrossRef]
- Genc, E.; Yuksel, S.; Caglar, A.; Beytemur, O.; Gulec, M.A. Comparison on effects of platelet-rich plasma versus autologous conditioned serum on Achilles tendon healing in a rat model. Acta Orthop. Traumatol. Turc. 2020, 54, 438–444. [Google Scholar] [CrossRef]
- Yoon, J.P.; Lee, C.-H.; Jung, J.W.; Lee, H.-J.; Lee, Y.-S.; Kim, J.-Y.; Park, G.Y.; Choi, J.H.; Chung, S.W. Sustained Delivery of Transforming Growth Factor β1 by Use of Absorbable Alginate Scaffold Enhances Rotator Cuff Healing in a Rabbit Model. Am. J. Sports Med. 2018, 46, 1441–1450. [Google Scholar] [CrossRef]
- Scott, A.; Cook, J.L.; Hart, D.A.; Walker, D.C.; Duronio, V.; Khan, K.M. Tenocyte responses to mechanical loading in vivo: A role for local insulin-like growth factor 1 signaling in early tendinosis in rats. Arthritis Rheum. 2007, 56, 871–881. [Google Scholar] [CrossRef]
- Dolkart, O.; Chechik, O.; Zarfati, Y.; Brosh, T.; Alhajajra, F.; Maman, E. A single dose of platelet-rich plasma improves the organization and strength of a surgically repaired rotator cuff tendon in rats. Arch. Orthop. Trauma Surg. 2014, 134, 1271–1277. [Google Scholar] [CrossRef]
- Yüksel, S.; Adanir, O.; Gultekin, M.Z.; Caglar, A.; Kucukyildirim, B.O.; Alagoz, E.; Gulec, M.A. The examination of the effect of platelet rich plasma for curing achilles tendons of free moving rats after surgical ıncision and treatment. Acta Orthop. Traumatol. Turc. 2015, 49, 544–551. [Google Scholar] [CrossRef]
- Sun, Y.; Kwak, J.-M.; Kholinne, E.; Koh, K.-H.; Tan, J.; Jeon, I.-H. Subacromial bursal preservation can enhance rotator cuff tendon regeneration: A comparative rat supraspinatus tendon defect model study. J. Shoulder Elb. Surg. 2021, 30, 401–407. [Google Scholar] [CrossRef]
- Oztermeli, A.; Karaca, S.; Yucel, I.; Midi, A.; Sen, E.I.; Ozturk, B.Y. The effect of erythropoietin on rat rotator cuff repair model: An experimental study. J. Orthop. Surg. 2019, 27. [Google Scholar] [CrossRef]
- Pecin, M.; Kreszinger, M.; Vukovic, S.; Lipar, M.; Smolec, O.; Radisic, B.; Kos, J. Accelerated Achilles tendon healing with interleukin-1 receptor antagonist protein in rabbits. Turk. J. Veter. Anim. Sci. 2017, 41, 118–126. [Google Scholar] [CrossRef]
- Saha, P.K. Analysis of Results of Platelet-rich Plasma with Arthroscopic Acromioplasty and Arthroscopic Acromioplasty: A Comparative Study. Int. J. Sci. Stud. 2016, 4, 87–91. [Google Scholar] [CrossRef]
- Kokubu, S.; Inaki, R.; Hoshi, K.; Hikita, A. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen. Ther. 2020, 14, 103–110. [Google Scholar] [CrossRef]
- Dallaudière, B.; Lempicki, M.; Pesquer, L.; Louedec, L.; Preux, P.M.; Meyer, P.; Hess, A.; Durieux, M.H.M.; Hummel, V.; Larbi, A.; et al. Acceleration of tendon healing using US guided intratendinous injection of bevacizumab: First pre-clinical study on a murine model. Eur. J. Radiol. 2013, 82, e823–e828. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.E.; Puskas, B.L.; Mandelbaum, B.R.; Gerhardt, M.B.; Rodeo, S.A. Platelet-Rich Plasma. Am. J. Sports Med. 2009, 37, 2259–2272. [Google Scholar] [CrossRef]
- Connell, D.A.; Ali, K.E.; Ahmad, M.; Lambert, S.; Corbett, S.; Curtis, M. Ultrasound-guided autologous blood injection for tennis elbow. Skelet. Radiol. 2006, 35, 371–377. [Google Scholar] [CrossRef]
- Suresh, S.P.S.; Ali, K.E.; Jones, H.; Connell, D.A.; Beall, D.P.; Klauser, A.S. Medial epicondylitis: Is ultrasound guided autologous blood injection an effective treatment? Br. J. Sports Med. 2006, 40, 935–939. [Google Scholar] [CrossRef] [Green Version]
- De Vos, R.J.; Weir, A.; Van Schie, H.T.M.; Bierma-Zeinstra, S.M.A.; Verhaar, J.A.N.; Weinans, H.; Tol, J.L. Platelet-Rich Plasma Injection for Chronic Achilles Tendinopathy. JAMA 2010, 303, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Docking, S.I.; Cook, J.; Chen, S.; Scarvell, J.; Cormick, W.; Smith, P.; Fearon, A. Identification and differentiation of gluteus medius tendon pathology using ultrasound and magnetic resonance imaging. Musculoskelet. Sci. Pr. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Okazaki, Y.; Furumatsu, T.; Maehara, A.; Miyazawa, S.; Kamatsuki, Y.; Hino, T.; Ozaki, T. Histological alterations to the hamstring tendon caused by cleaning during autograft preparation. Muscle Ligaments Tendons J. 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Zabrzynski, J.; Gagat, M.; Paczesny, L.; Grzanka, D.; Huri, G. Correlation between smoking and neovascularization in biceps tendinopathy: A functional preoperative and immunohistochemical study. Ther. Adv. Chronic Dis. 2020, 11. [Google Scholar] [CrossRef]
- De Vos, R.-J.; Weir, A.; Cobben, L.P.J.; Tol, J.L. The Value of Power Doppler Ultrasonography in Achilles Tendinopathy. Am. J. Sports Med. 2007, 35, 1696–1701. [Google Scholar] [CrossRef]
- Alfredson, H.; Öhberg, L. Sclerosing injections to areas of neo-vascularisation reduce pain in chronic Achilles tendinopathy: A double-blind randomised controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2005, 13, 338–344. [Google Scholar] [CrossRef]
Author | Type of Study | Country | Year of Publication | Region of Tendinopathy | No. of Subjects | Control | Therapeutic Method |
---|---|---|---|---|---|---|---|
Fukawa et al. [16] | Animal in vivo study | Japan | 2015 | Achilles | 24 | √ | PRP |
Güleç et al. [1] | Animal in vivo study | Turkey | 2018 | Achilles | 9 | √ | Curcumin |
Beytemür et al. [34] | Animal Study | Turkey | 2018 | Achilles | 8 | √ | Isotretinoin |
Pingel et al. [35] | Animal in vivo study | Denmark | 2013 | Achilles | 12 | √ | High-intensity training |
Çıraklı et al. [36] | Animal in vivo study | Turkey | 2018 | Achilles | 12 | √ | Tranexamic acid |
de Cesar et al. [37] | Animal in vivo study | Brazil, USA | 2018 | Achilles | 36 | √ | Collagenase |
Genç et al. [38] | Animal in vivo study | Turkey | 2018 | Achilles | 20 | √ | ACS (autologous conditioned serum) |
Eren et al. [39] | Animal in vivo study | Tukey | 2018 | Achilles | 24 | √ | LMWH/Rivaroxaban |
Dincel et al. [40] | Animal in vivo study | Turkey | 2018 | Achilles | 32 | √ | Vitamin C/Hyaluronic Acid |
Aydın et al. [41] | Animal in vivo study | Turkey | 2015 | Achilles | 12 | √ | Ankaferd blood stopper® |
Kim et al. [42] | Animal in vivo study | Korea | 2015 | SST | 21 | √ | PRP |
Genç et al. [43] | Animal in vivo study | Turkey | 2020 | Achilles | 20 | √ | PRP |
Yoon et al. [44] | Animal in vivo study | Korea | 2018 | SST | 48 | √ | TGF-B/Scaffold |
Scott et al. [45] | Animal in vivo study | Canada | 2007 | SST | 23 | √ | IGF1 |
Dolkart et al. [46] | Animal in vivo study | Israel | 2014 | SST | 22 | √ | PRP |
Yüksel et al. [47] | Animal in vivo study | Turkey | 2015 | Achilles | 10 | √ | PRP |
Sun et al. [48] | Animal in vivo study | Korea | 2020 | SST | 20 | √ | Subacromial bursa excision |
Oztermeli et al. [49] | Animal in vivo study | Turkey | 2019 | SST | 48 | √ | EPO |
Pecin et al. [50] | Animal in vivo study | Croatia | 2016 | Achilles | 13 | √ | Interleukin-1 receptor antagonist |
Saha et al. [51] | Human in vivo study | India | 2016 | SST | 45 | √ | PRP |
Kokubu et al. [52] | Animal in vivo study | Japan | 2020 | Achilles | 18 | √ | Adipose-derived Stem Cells |
Dallaudière et al. [53] | Animal in vivo study | France | 2013 | Achilles and Patellar tendons | 40 | √ | Bevacizumab |
Author | Components of Bonar Score | Number of Investigators | Area of Specimen Investigation | Additional Staining Methods |
---|---|---|---|---|
Fukawa et al. [16] | 4 main | 2 | The most pathological area | Masson’s Trichome |
Güleç et al. [1] | 4 main | 1 | n/a | Alcian Blue |
Beytemür et al. [34] | 4 main | n/a | n/a | Masson Trichrome, Alcian Blue |
Çıraklı et al. [36] | 4 main | 1 | n/a | Masson Trichrome, Alcian Blue |
Genç et al. [38] | 4 main | n/a | n/a | Masson Trichrome, Alcian Blue, Sirius Red, IHC |
Eren et al. [39] | 4 main | n/a | n/a | Masson Trichrome, Alcian Blue, Sirius Red |
Dincel et al. [40] | 4 main | n/a | n/a | Masson Trichrome, Alcian Blue |
Aydın et al. [41] | 4 main | 1 | n/a | Alcian Blue |
Kim et al. [42] | 4 main | 1 | n/a | Masson Trichrome, IHC |
Genç et al. [43] | 4 main | 1 | n/a | Masson Trichrome, Alcian Blue |
Yoon et al. [44] | 4 main | 1 | 5 scanned sections per slide | Masson Trichrome, Alcian Blue, Pictorius Red, SafraninO |
Dolkart et al. [46] | 4 main | 1 | n/a | Alcian Blue, Picrosirius Red |
Yüksel et al. [47] | 4 main | 1 | n/a | Masson Trichrome, Alcian Blue |
Sun et al. [48] | 4 main | 2 | Total area of specimen | IHC |
Oztermeli et al. [49] | 4 main | 1 | n/a | Alcian Blue |
Pecin et al. [50] | 4 main | n/a | n/a | Masson Trichrome, Verhoeff van Gieso, Gridley method, Gomori method |
Saha et al. [51] | 4 main | n/a | n/a | n/a |
Kokubu et al. [52] | 4 main | n/a | n/a | Toluidine Blue, Alizarin Red |
Dallaudière et al. [53] | 4 main | n/a | n/a | Masson Trichrome |
Pingel et al. [35] | 4 main + tenocyte proliferation | 1 | n/a | Alcian Blue, IHC |
de Cesar et al. [37] | 4 main + tenocyte proliferation | 2 | The most pathological area | Alcian Blue, Safranin, Picrosirius Red |
Scott et al. [45] | 4 main + tenocyte proliferation | 1 | Total area of specimen | Alcian Blue, Picrosirius Red |
Author | Therapeutic Method | Therapeutic Effect | Mean Bonar Score | Mean Bonar Score Control Group | Comment on Therapeutic Advance |
---|---|---|---|---|---|
Fukawa et al. [16] | PRP | Neutral | 8.3 | 8.9 | No significant effect of PRP treatment on the T2 value in MRI or Bonar score was observed |
Güleç et al. [1] | Curcumin | Positive | 4.1 | 6.77 | Curcumin application resulted in improved total tendon healing histologically and biomechanically |
Beytemür et al. [34] | Isotretinoin | Negative | 2.9 | 1.6 | The study detected histopathological and biomechanical negative effect of isotretinoin on Achilles tendon healing |
Pingel et al. [35] | High-intensity training | Negative | 2.75 | 1.17 | High-intensity training caused structural changes in the Achilles tendon and increased mast cell density |
Çıraklı et al. [36] | Tranexamic acid | Negative | 9.33 | 9.167 | Locally administered tranexamic acid had an adverse effect on tendon healing |
de Cesar et al. [37] | Collagenase (low dose) | Negative | 11.8 | 5.6 | Low dose Coll. specimens showed worse histological and biomechanical properties |
Genç et al. [38] | ACS (autologous conditioned serum) | Positive | 5.6 | 7 | Injection of ACS had a positive effect on the histopathological healing of rat Achilles tendons on days 15 and 30, and on biomechanical healing on day 15 |
Eren et al. [39] | LMWH/Rivaroxaban | Positive | LMWH: 5.5 Rivaroxaban: 5.7 | 9 | Both LMWH and rivaroxaban showed positive effects on tendon healing with no effect in biomechanical examination |
Dincel et al. [40] | Vitamin C/Hyaluronic Acid | Positive | Vit. C: 8 | 10 | Both vitamin C and hyaluronic acid had therapeutic effects on tendon healing |
HA: 8.7 | |||||
Aydın et al. [41] | Ankaferd blood stopper® | Negative | 6.58 | 4.91 | Application of ABS had histologically negative effect on tendon healing in rats |
Kim et al. [42] | PRP | Positive | Self-assembled peptide (SAP): 6.4 | SAP+PRP can be effective in healing a rotator cuff tear by enhancing the collagen arrangement, inhibiting inflammatory changes and apoptosis | |
PRP: 5.9 | |||||
SAP+PRP: 4.7 | |||||
Genç et al. [43] | PRP | Positive | ACS: 4.8 | 5.2 | PRP treatment after Achilles tendon surgery showed better histopathological results than both the ACS and control groups |
PRP: 3.8 | |||||
Yoon et al. [44] | TGF-β/Scaffold | Positive | SST repair + TGF-B: 6.12 | SST isolate repair: 5 | Reverse Bonar score criteria |
SST repair + TGF-B + Scaffold: 7.5 | improved biomechanical and histological outcomes after treatment with TGF-β/ scaffold and rotator cuff repair in a rabbit model. | ||||
Scott et al. [45] | Mechanical loading | Negative | 5.2 | 0.9 | In vivo tendon loading produced a non-inflammatory pathology |
Dolkart et al. [46] | PRP | Positive | 4.9 | 7.4 | Bonar score of PRP-treated tendons was significantly improved (p = 0.018) compared with the control group. Vascularity scores were similar in both groups |
Yüksel et al. [47] | PRP | Positive | 3.25 | 6.25 | PRP use in Achilles tendon ruptures positively affects histopathological recovery in the early period |
Sun et al. [48] | Subacromial bursa excision | Positive | 0.5 | 1.5 | The modified Bonar scale scores showed improved regeneration of supraspinatus tendons in the bursal preservation group |
Oztermeli et al. [49] | Erythropoietin (EPO) | Positive | Local EPO: 1.33 Systemic EPO: 4.5 | 6 | EPO application showed better results in the late local group than the late systemic group. EPO may be an effective way to enhance rotator cuff repair |
Pecin et al. [50] | Interleukin-1 receptor antagonist | Positive | 1.5 | 2 | Lower concentration of IL-1β prevented iatrogenic inflammation, which resulted in limited degeneration of tendons |
Saha et al. [51] | PRP | Positive | 2.3 | 7.31 | Arthroscopic acromioplasty significantly limited symptoms of RCT. In combination with PRP, it significantly improved tendon healing |
Kokubu et al. [52] | Adipose-derived Stem Cells (ASCs) | Positive | 4.3 | 9.5 | ASCs improved tendon repair and prevented ectopic ossification by inhibiting inflammation in acute tendon injury and inducing neovascularization in the early phase of tendon healing |
Dallaudière et al. [53] | Bevacizumab | Positive | 6 | 7 | Intra-tendinous injection of Bevacizumab accelerated tendon healing on a rat model of tendinosis, with no local toxicity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabrzyński, J.; Gagat, M.; Huri, G.; Łapaj, Ł.; Paczesny, Ł.; Zielińska, W.; Zabrzyńska, M.; Szwedowski, D.; Kruczyński, J. Therapeutic Advances in Tendinopathy Quantified Microscopically Using Bonar Score, with a Special Reference to PRP Therapy—A Systematic Review of Experimental Studies. Appl. Sci. 2021, 11, 4973. https://doi.org/10.3390/app11114973
Zabrzyński J, Gagat M, Huri G, Łapaj Ł, Paczesny Ł, Zielińska W, Zabrzyńska M, Szwedowski D, Kruczyński J. Therapeutic Advances in Tendinopathy Quantified Microscopically Using Bonar Score, with a Special Reference to PRP Therapy—A Systematic Review of Experimental Studies. Applied Sciences. 2021; 11(11):4973. https://doi.org/10.3390/app11114973
Chicago/Turabian StyleZabrzyński, Jan, Maciej Gagat, Gazi Huri, Łukasz Łapaj, Łukasz Paczesny, Wioletta Zielińska, Maria Zabrzyńska, Dawid Szwedowski, and Jacek Kruczyński. 2021. "Therapeutic Advances in Tendinopathy Quantified Microscopically Using Bonar Score, with a Special Reference to PRP Therapy—A Systematic Review of Experimental Studies" Applied Sciences 11, no. 11: 4973. https://doi.org/10.3390/app11114973
APA StyleZabrzyński, J., Gagat, M., Huri, G., Łapaj, Ł., Paczesny, Ł., Zielińska, W., Zabrzyńska, M., Szwedowski, D., & Kruczyński, J. (2021). Therapeutic Advances in Tendinopathy Quantified Microscopically Using Bonar Score, with a Special Reference to PRP Therapy—A Systematic Review of Experimental Studies. Applied Sciences, 11(11), 4973. https://doi.org/10.3390/app11114973