A Spatial-Temporal Approach for Air Quality Forecast in Urban Areas
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. System Framework
3.2. Utilized Features
3.3. Weighted-Average Strategy to Forecast PM2.5 Value
4. Experimental Evaluations
4.1. Experimental Datasets and Settings
- AirBox: An AirBox is a device that can monitor PM2.5 using the principles of optics, temperature, and relative humidity. It measures the number of particles and evaluates the concentration of PM2.5. Edimax Technology and Academia Sinica produce AirBox and make it available to schools and citizens. Each device monitors data every 5 min; however, weather data are monitored every hour. We averaged the monitored data from AirBox every hour to combine it with the weather data. As long as AirBox users agree, the monitoring data are uploaded to the Edimax Internet-of-Things platform and will be made available as an open data download. This was provided by Data.Taipei.
- Weather station: The Central Weather Bureau provides meteorological data and weather forecast data. They consist of temperature, relative humidity, wind speed, wind direction, atmospheric pressure, and daily rainfall. It monitors data once an hour. We received the weather data from data.gov.
- Location information: Location data include the latitude and longitude of each AirBox device. Due to users’ private rights, some location coordinates were only accurate to the third decimal place. These data were also received from Data.Taipei.
4.2. Impact on Various Parameter Settings
4.2.1. Temporal Parameter
4.2.2. Spatial Parameter
4.3. Performance
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Chen, L.J.; Hsu, W.; Cheng, M.; Lee, H.C. LASS: A location-aware sensing system for participatory PM2.5 monitoring. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion, New York, NY, USA, June 2016; p. 98. [Google Scholar]
- Baralis, E.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Kavoosifar, M.R. Analyzing Air Pollution on The Urban Environment. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016. [Google Scholar]
- Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Ricupero, G.; Xiao, X. Modeling Correlations Among Air Pollution-Related Data Through Generalized Association Rules. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MI, USA, 18–20 May 2016. [Google Scholar]
- Calculli, C.; Fassò, A.; Finazzi, F.; Pollice, A.; Turnone, A. Maximum Likelihood Estimation of the Multivariate Hidden Dynamic Geostatistical Model with Application to Air Quality in Apulia, Italy. Environmetrics 2015, 26, 406–417. [Google Scholar] [CrossRef]
- Gromke, C.; Jamarkattel, N.; Ruck, B. Influence of Roadside Hedgerows on Air Quality in Urban Street Canyons. Atmos. Environ. 2016, 139, 75–86. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Huang, L.; Yang, W.; Shen, Y. Temporal-Spatial Aggregated Urban Air Quality Inference with Heterogeneous Big Data. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Bozeman, MT, USA, 8–10 August 2016. [Google Scholar]
- Lv, B.; Zhang, B.; Bai, Y. A Systematic Analysis of PM2.5 in Beijing and Its Sources from 2000 to 2012. Atmos. Environ. 2016, 124, 98–108. [Google Scholar] [CrossRef]
- Wang, S.; Paul, M.J.; Dredze, M. Social Media as A Sensor of Air Quality and Public Response in China. J. Med. Internet Res. 2015, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, A.; Mao, H.; Nie, W.; Zhou, D.; Liu, L.; Fu, C. Impact of Synoptic Weather Patterns and Inter-Decadal Climate Variability on Air Quality in The North China Plain During 1980–2013. Atmos. Environ. 2016, 124, 119–128. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting Fine-Grained Air Quality based on Big Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015. [Google Scholar]
- Cheng, F.Y.; Feng, C.Y.; Yang, Z.M.; Hsu, C.H.; Chan, K.W.; Lee, C.Y.; Chang, S.C. Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmos. Environ. 2021, 244, 117909. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Zheng, G.; Pan, J.Z.; Wu, H.; Zhang, N. Big Smog Meets Web Science: Smog Disaster Analysis Based on Social Media and Device Data on The Web. In Proceedings of the International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014. [Google Scholar]
- Hsieh, H.P.; Lin, S.D.; Zheng, Y. Inferring Air Quality for Station Location Recommendation based on Urban Big Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015. [Google Scholar]
- Jiang, W.; Wang, Y.; Tsou, M.H.; Fu, X. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI): A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter). PLoS ONE 2015, 10, e0141185. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, J.; Luo, J. Using User Generated Online Photos to Estimate and Monitor Air Pollution in Major Cities. In Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, Zhangjiajie, China, 19–21 August 2015. [Google Scholar]
- Mei, S.; Li, H.; Fan, J.; Zhu, X.; Dyer, C.R. Inferring Air Pollution by Sniffing Social Media. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Beijing, China, 17–20 August 2014. [Google Scholar]
- Wan, Y.; Xu, M.; Huang, H.; Chen, S.X. A Spatio-Temporal Model for The Analysis and Prediction of Fine Particulate Matter Concentration in Beijing. Environmetrics 2020, 32, e2648. [Google Scholar] [CrossRef]
- Lee, M.; Lin, L.; Chen, C.Y.; Tsao, Y.; Yao, T.H.; Fei, M.H.; Fang, S.H. Forecasting air quality in Taiwan by using machine learning. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Liu, H.; Duan, Z.; Chen, C. A Hybrid Framework for Forecasting PM2.5 Concentrations using Multi-Step Deterministic and Probabilistic Strategy. Air Qual. Atmos. Health 2019, 12, 785–795. [Google Scholar] [CrossRef]
- Liu, H.; Dong, S. A Novel Hybrid Ensemble Model for Hourly PM2.5 Forecasting using Multiple Neural Networks: A Case Study in China. Air Qual. Atmos. Health 2020, 13, 1411–1420. [Google Scholar] [CrossRef]
- Liu, H.; Long, Z.; Duan, Z.; Shi, H. A New Model Using Multiple Feature Clustering and Neural Networks for Forecasting Hourly PM2.5 Concentrations, and Its Applications in China. Engineering 2020, 6, 944–956. [Google Scholar] [CrossRef]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen Ways to Look at The Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the ACM National Conference, New York, NY, USA, 27–29 January 1968; pp. 517–524. [Google Scholar]
- Aouizerats, B.; Van Der Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of Transboundary Transport of Biomass Burning Emissions to Regional Air Quality in Southeast Asia During a High Fire Event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C. Forty Years of Improvements in European Air Quality: Regional Policy-Industry Interactions with Global Impacts. Atmos. Chem. Phys. 2016, 16, 3825–3841. [Google Scholar] [CrossRef] [Green Version]
- Cuchiara, G.C.; Rappenglück, B.; Rubio, M.A.; Lissi, E.; Gramsch, E.; Garreaud, R.D. Modeling Study of Biomass Burning Plumes and Their Impact on Urban Air Quality; A Case Study of Santiago De Chile. Atmos. Environ. 2017, 166, 79–91. [Google Scholar] [CrossRef]
- Lee, Y.H.; Shindell, D.T.; Faluvegi, G.; Pinder, R.W. Potential Impact of A US Climate Policy and Air Quality Regulations on Future Air Quality and Climate Change. Atmos. Chem. Phys. Discuss. 2016, 16, 5323–5342. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Moreno, T.; Mendes, L.; Eleftheriadis, K.; Diapouli, E.; Alves, C.A.; Minguillón, M.C. Factors Controlling Air Quality in Different European Subway Systems. Environ. Res. 2016, 146, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Millstein, D.; Wiser, R.; Bolinger, M.; Barbose, G. The Climate and Air-Quality Benefits of Wind and Solar Power in The United States. Nat. Energy 2017, 2, 17134. [Google Scholar] [CrossRef]
- Shirmohammadi, F.; Sowlat, M.H.; Hasheminassab, S.; Saffari, A.; Ban-Weiss, G.; Sioutas, C. Emission Rates of Particle Number, Mass and Black Carbon by The Los Angeles International Airport (LAX) and Its Impact on Air Quality in Los Angeles. Atmos. Environ. 2017, 151, 82–93. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Zhang, L.; Zhang, K. An Improved Model for PM2.5 Inference based on Support Vector Machine. In Proceedings of the IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Shanghai, China, 30 May–1 June 2016. [Google Scholar]
- Zheng, Y.; Liu, F.; Hsieh, H.P. U-Air: When Urban Air Quality Inference Meets Big Data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013. [Google Scholar]
- Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Ricupero, G. Discovering Air Quality Patterns in Urban Environments. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Adjunct, Heidelberg, Germany, 12–16 September 2016. [Google Scholar]
- Zhu, J.Y.; Zhang, C.; Zhang, H.; Zhi, S.; Li, V.O.; Han, J.; Zheng, Y. p-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data. IEEE Trans. Big Data 2018, 4, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Balseca, J.; Pérez-Foguet, A. Modelling Hourly Spatio-Temporal PM2.5 Concentration in Wildfire Scenarios using Dynamic Linear Models. Atmos. Res. 2020, 242, 104999. [Google Scholar] [CrossRef]
- Bouarar, I.; Brasseur, G.; Granier, C.; Petersen, K.; Doumbia, E.H.T.; Wang, X.; Fan, Q.; Gauss, M.; Peuch, V.H.; Pommier, M.; et al. Monitoring and Forecasting Air Quality over China: Results from the PANDA Modeling System. In Proceedings of the International Global Atmospheric Chemistry (IGAC) Science Conference, Breckenridge, CO, USA, 26–30 September 2016. [Google Scholar]
- Domańska, D.; Łukasik, S. Handling High-Dimensional Data in Air Pollution Forecasting Tasks. Ecol. Inform. 2016, 34, 70–91. [Google Scholar] [CrossRef]
- Zhuang, Y.; Lin, F.; Yoo, E.H.; Xu, W. Airsense: A Portable Context-Sensing Device for Personal Air Quality Monitoring. In Proceedings of the Workshop on Pervasive Wireless Healthcare, Hangzhou, China, 22 June 2015. [Google Scholar]
- Zheng, Y.; Chen, X.; Jin, Q.; Chen, Y.; Qu, X.; Liu, X.; Sun, W. A Cloud-Based Knowledge Discovery System for Monitoring Fine-Grained Air Quality. 2014. Available online: http://research.microsoft.com/apps/pubs/default (accessed on 27 May 2021).
Feature | Type | Description |
---|---|---|
Latitude | Spatial | Latitude (WG84) of air quality monitoring devices |
Longitude | Spatial | Longitude (WG84) of air quality monitoring devices |
Altitude | Spatial | Altitude of air quality monitoring devices (unit: meter) |
Observed Time | Temporal | Observed time of monitored data |
Temperature | Temporal | Temperature data (unit: Celsius) |
Humidity | Temporal | Relative humidity data (unit: %) |
Wind Speed | Temporal | Wind speed data (unit: m/s) |
Wind Direction | Temporal | Wind direction data (unit: bearing angle) |
Pressure | Temporal | Pressure data (unit: hPa) |
Rainfall | Temporal | Daily rainfall (unit: mm) |
PM2.5 | Temporal | PM2.5 value (unit: g/m3) |
Grade | Good | Moderate | Unhealthy for Sensitive Groups | Unhealthy | Very Unhealthy | Hazardous |
---|---|---|---|---|---|---|
PM2.5 (μg/m3) | 0.0–15.4 | 15.5–35.4 | 35.5–54.4 | 54.5–150.4 | 150.5–250.4 | 250.5–500.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, E.H.-C.; Liu, C.-Y. A Spatial-Temporal Approach for Air Quality Forecast in Urban Areas. Appl. Sci. 2021, 11, 4971. https://doi.org/10.3390/app11114971
Lu EH-C, Liu C-Y. A Spatial-Temporal Approach for Air Quality Forecast in Urban Areas. Applied Sciences. 2021; 11(11):4971. https://doi.org/10.3390/app11114971
Chicago/Turabian StyleLu, Eric Hsueh-Chan, and Chia-Yu Liu. 2021. "A Spatial-Temporal Approach for Air Quality Forecast in Urban Areas" Applied Sciences 11, no. 11: 4971. https://doi.org/10.3390/app11114971
APA StyleLu, E. H.-C., & Liu, C.-Y. (2021). A Spatial-Temporal Approach for Air Quality Forecast in Urban Areas. Applied Sciences, 11(11), 4971. https://doi.org/10.3390/app11114971