Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Approach
2.3. Methodology
2.4. Training Load Measures
2.4.1. External Training Load
2.4.2. Internal Training Load
2.4.3. Recovery Status
2.5. Statistical Analysis
3. Results
3.1. Age Group Analysis
3.2. Inter-Day Analysis
3.3. Inter-Week Analysis
3.4. Playing Position Analysis
3.5. Interaction Effects between Age, Inter-Week, Inter-Day and Playing Position
4. Discussion
4.1. Age Group Analysis
4.2. Inter-Day Analysis
4.3. Inter-Week Analysis
4.4. Inter-Playing Positions Analysis
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Issurin, V.B. New horizons for the methodology and physiology of training periodization. Sports Med. 2010, 40, 189–206. [Google Scholar] [CrossRef]
- Akubat, I.; Patel, E.; Barrett, S.; Abt, G. Methods of monitoring the training and match load and their relationship to changes in fitness in professional youth soccer players. J. Sports Sci. 2012, 30, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Brink, M.S.; Visscher, C.; Coutts, A.J.; Lemmink, K.A.P.M. Changes in perceived stress and recovery in overreached young elite soccer players. Scand. J. Med. Sci. Sports 2012, 22, 285–292. [Google Scholar] [CrossRef]
- Manzi, V.; D’Ottavio, S.; Impellizzeri, F.M.; Chaouachi, A.; Chamari, K.; Castagna, C. Profile of weekly training load in elite male professional basketball players. J. Strength Cond. Res. 2010, 24, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Borresen, J.; Ian Lambert, M. The Quantification of training load, the training response and the effect on performance. Sports Med. 2009, 39, 779–795. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Dellaserra, C.; Gao, Y.; Ransdell, L. Use of integrated technology in team sports: A review of opportunities, challenges, and future directions for athletes. J. Strength Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a method for external workload monitoring in invasion team sports. A systematic review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef]
- Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring accelerations with GPS in football: Time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Quantifying training load: A comparison of subjective and objective methods. Int. J. Sports Physiol. Perform. 2008, 3, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Akenhead, R.; Nassis, G.P. Training load and player monitoring in high-Level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE method for training load monitoring: Validity, ecological usefulness, and influencing factors. Front. Neurosci. 2017, 11. [Google Scholar] [CrossRef]
- Marynowicz, J.; Kikut, K.; Lango, M.; Horna, D.; Andrzejewski, M. Relationship between the Session-RPE and external measures of training load in youth soccer training. J. Strength Cond. Res. 2020, 34, 2800–2804. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, G.; Hassmén, P. Overtraining and recovery: A conceptual model. Sports Med. 1998, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Sato, T.; Maeda, A.; Takahashi, Y. Program design based on a mathematical model using rating of perceived exertion for an elite Japanese sprinter: A case study. J. Strength Cond. Res. 2006, 20, 36–42. [Google Scholar] [CrossRef]
- Brink, M.S.; Nederhof, E.; Visscher, C.; Schmikli, S.L.; Lemmink, K.A.P.M. Monitoring load, recovery, and performance in young elite soccer players. J. Strength Cond. Res. 2010, 24, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Brito, J.; Hertzog, M.; Nassis, G.P. Do match-related contextual variables influence training load in highly trained soccer players? J. Strength Cond. Res. 2016, 30, 393–399. [Google Scholar] [CrossRef]
- Oliveira, R.; Brito, J.P.; Martins, A.; Mendes, B.; Marinho, D.A.; Ferraz, R.; Marques, M.C. In-season internal and external training load quantification of an elite European soccer team. PLoS ONE 2019, 14, e0209393. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.M.; Owen, A.; Serra-Olivares, J.; Nikolaidis, P.T.; van der Linden, C.M.I.; Mendes, B. Characterization of the weekly external load profile of professional soccer teams from Portugal and the Netherlands. J. Hum. Kinet. 2019, 66, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Jeong, T.S.; Reilly, T.; Morton, J.; Bae, S.W.; Drust, B. Quantification of the physiological loading of one week of “pre-season” and one week of “in-season” training in professional soccer players. J. Sports Sci. 2011, 29, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal training-load quantification in elite English Premier League soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akenhead, R.; Hayes, P.R.; Thompson, K.G.; French, D. Diminutions of acceleration and deceleration output during professional football match play. J. Sci. Med. Sport 2013, 16, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.L.; Lago-Peñas, C.; Gómez, M.Á.; Mendes, B.; Dellal, A. Analysis of a training mesocycle and positional quantification in elite European soccer players. Int. J. Sports Sci. Coach. 2017, 12, 665–676. [Google Scholar] [CrossRef]
- Clemente, F.M.; Seerden, G.; van der Linden, C.M.I. Quantifying the physical loading of five weeks of pre-season training in professional soccer teams from Dutch and Portuguese leagues. Physiol. Behav. 2019, 209, 112588. [Google Scholar] [CrossRef]
- Pettersen, S.A.; Brenn, T. Activity profiles by position in youth elite soccer players in official matches. Sports Med. Int. Open 2019, 3, E19–E24. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Villanueva, A.; Buchheit, M.; Simpson, B.; Bourdon, P.C. Match play intensity distribution in youth soccer. Int. J. Sports Med. 2013, 34, 101–110. [Google Scholar] [CrossRef]
- McMillan, K.; Helgerud, J.; Macdonald, R.; Hoff, J. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br. J. Sports Med. 2005, 39, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Beenham, M.; Barron, D.J.; Fry, J.; Hurst, H.H.; Figueirdo, A.; Atkins, S. A comparison of GPS workload demands in match play and small-sided games by the positional role in youth soccer. J. Hum. Kinet. 2017, 57, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, D.; Gonçalves, B.; Figueira, B.; Abade, E.; Marcelino, R.; Sampaio, J. Typical weekly workload of under 15, under 17, and under 19 elite Portuguese football players. J. Sports Sci. 2015, 33, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
- Abade, E.A.; Gonçalves, B.V.; Leite, N.M.; Sampaio, J.E. Time-motion and physiological profile of football training sessions performed by under-15, under-17, and under-19 elite Portuguese players. Int. J. Sports Physiol. Perform. 2014, 9, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Wrigley, R.; Drust, B.; Stratton, G.; Scott, M.; Gregson, W. Quantification of the typical weekly in-season training load in elite junior soccer players. J. Sports Sci. 2012, 30, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Zurutuza, U.; Castellano, J.; Echeazarra, I.; Guridi, I.; Casamichana, D. Selecting training-load measures to explain variability in football training games. Front. Psychol. 2020, 10, 2897. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.; Cormack, S.; Coutts, A.J.; Boyd, L.J.; Aughey, R.J. Variability of GPS units for measuring distance in team sport movements. Int. J. Sports Physiol. Perform. 2010, 5, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Beato, M.; Coratella, G.; Stiff, A.; Iacono, A. Dello The validity and between-unit variability of GNSS units (STATSports Apex 10 and 18 Hz) for measuring distance and peak speed in team sports. Front. Physiol. 2018, 9, 1288. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Clemente, F.M.; van der Linden, C.M.I.; Rosemann, T.; Knechtle, B. Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. Front. Physiol. 2018, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, S.; Till, K.; Weaving, D.; Jones, B. The use of microtechnology to quantify the peak match demands of the football codes: A systematic review. Sports Med. 2018, 48, 2549–2575. [Google Scholar] [CrossRef] [Green Version]
- Tierney, P.J.; Young, A.; Clarke, N.D.; Duncan, M.J. Match play demands of 11 versus 11 professional football using global positioning system tracking: Variations across common playing formations. Hum. Mov. Sci. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Scott, B.R.; Lockie, R.G.; Knight, T.J.; Clark, A.C.; De Jonge, X.A.K.J. A comparison of methods to quantify the in-season training load of professional soccer players. Int. J. Sports Physiol. Perform. 2013, 8, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Randers, M.B.; Mujika, I.; Hewitt, A.; Santisteban, J.; Bischoff, R.; Solano, R.; Zubillaga, A.; Peltola, E.; Krustrup, P.; Mohr, M. Application of four different football match analysis systems: A comparative study. J. Sports Sci. 2010, 28, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Casamichana, D.; Castellano, J.; Calleja-Gonzalez, J.; San Román, J.; Castagna, C. Relationship between indicators of training load in soccer players. J. Strength Cond. Res. 2013, 27, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Strudwick, A.J.; Atkinson, G.; Drust, B.; Gregson, W. The within-participant correlation between perception of effort and heart rate-based estimations of training load in elite soccer players. J. Sports Sci. 2016, 34, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-based training load in soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef]
- Alexiou, H.; Coutts, A.J. A comparison of methods used for quantifying internal training load in women soccer players. Int. J. Sports Physiol. Perform. 2008, 3, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Brink, M.S.; Visscher, C.; Arends, S.; Zwerver, J.; Post, W.J.; Lemmink, K.A.P.M. Monitoring stress and recovery: New insights for the prevention of injuries and illnesses in elite youth soccer players. Br. J. Sports Med. 2010, 44, 809–815. [Google Scholar] [CrossRef]
- Kinugasa, T.; Kilding, A.E. A comparison of post-match recovery strategies in youth soccer players. J. Strength Cond. Res. 2009, 23, 1402–1407. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, T.M.; Ramos, R.; Silva, A.J.; Marinho, D.A. Assessment of passive drag in swimming by numerical simulation and analytical procedure. J. Sports Sci. 2018, 36, 492–498. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Gonçalves, B.; Coutinho, D.; Oliveira, R.; Travassos, B.; Sampaio, J.; Marques, M.C. Effects of knowing the task’s duration on soccer players’ positioning and pacing behaviour during small-sided games. Int. J. Environ. Res. Public Health 2020, 17, 3843. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Harley, J.A.; Tweddle, S.P. Examining the external training load of an English Premier League football team with special reference to acceleration. J. Strength Cond. Res. 2016, 30, 2424–2432. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, J.; Hernández, D.; Martin, V.; Sanchez, M.; Casamichana, D.; Rodriguez-Fernandez, A.; Ramirez-Campillo, R.; Nakamura, F.Y. Assessment of the external load of amateur soccer players during four consecutive training microcycles in relation to the external load during the official match. Mot. Rev. Educ. Fis. 2019, 25. [Google Scholar] [CrossRef] [Green Version]
- Los Arcos, A.; Mendez-Villanueva, A.; Martínez-Santos, R. In-season training periodization of professional soccer players. Biol. Sport 2017, 34, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Fessi, M.S.; Zarrouk, N.; Di Salvo, V.; Filetti, C.; Barker, A.R.; Moalla, W. Effects of tapering on physical match activities in professional soccer players. J. Sports Sci. 2016, 34, 2189–2194. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Marcora, S.M. Physiological assessment of aerobic training in soccer. J. Sports Sci. 2005, 23, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Lacome, M.; Cholley, Y.; Simpson, B.M. Neuromuscular responses to conditioned soccer sessions assessed via GPS-embedded accelerometers: Insights into tactical periodization. Int. J. Sports Physiol. Perform. 2011, 15, 577–583. [Google Scholar] [CrossRef]
- Owen, A.L.; Djaoui, L.; Newton, M.; Malone, S.; Mendes, B. A contemporary multi-modal mechanical approach to training monitoring in elite professional soccer. Sci. Med. Footb. 2017, 1, 216–221. [Google Scholar] [CrossRef]
- Vahia, D.; Knapman, H.; Kelly, A.; Williams, C.A. Variation in the correlation between heart rate and session rating of perceived exertion-based estimations of internal training load in youth soccer players. Pediatr. Exerc. Sci. 2019, 31, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Selmi, O.; Gonçalves, B.; Ouergui, I.; Sampaio, J.; Bouassida, A. Influence of well-being variables and recovery state in physical enjoyment of professional soccer players during small-sided games. Res. Sports Med. 2018, 26, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.; Açikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Özkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med. 2012, 11, 170–179. [Google Scholar] [PubMed]
- Barron, D.J.; Atkins, S.; Edmundson, C.; FewtreIl, D. Accelerometer derived load according to playing position in competitive youth soccer. Int. J. Perform. Anal. Sport 2014, 14, 734–743. [Google Scholar] [CrossRef]
- Brito, Â.; Roriz, P.; Silva, P.; Duarte, R.; Garganta, J. Effects of pitch surface and playing position on external load activity profiles and technical demands of young soccer players in match play. Int. J. Perform. Anal. Sport 2017, 17, 902–918. [Google Scholar] [CrossRef]
- Gonçalves, B.V.; Figueira, B.E.; Maçãs, V.; Sampaio, J. Effect of player position on movement behaviour, physical and physiological performances during an 11-a-side football game. J. Sports Sci. 2014, 32, 191–199. [Google Scholar] [CrossRef]
- Saward, C.; Morris, J.G.; Nevill, M.E.; Sunderland, C. The effect of playing status, maturity status, and playing position on the development of match skills in elite youth football players aged 11–18 years: A mixed-longitudinal study. Eur. J. Sport Sci. 2019, 19, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.; Brito, J.; Maia, J.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Bangsbo, J.; Malina, R.M.; Seabra, A. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int. J. Sports Med. 2013, 34, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Barnabé, L.; Volossovitch, A.; Duarte, R.; Ferreira, A.P.; Davids, K. Age-related effects of practice experience on collective behaviours of football players in small-sided games. Hum. Mov. Sci. 2016, 48, 74–81. [Google Scholar] [CrossRef]
- Coutinho, D.; Gonçalves, B.; Santos, S.; Travassos, B.; Wong, D.P.; Sampaio, J. Effects of the pitch configuration design on players’ physical performance and movement behaviour during soccer small-sided games. Res. Sports Med. 2019, 27, 298–313. [Google Scholar] [CrossRef]
- Nedelec, M.; Dupont, G. The influence of playing position in soccer on the recovery kinetics of cognitive and physical performance. J. Sports Med. Phys. Fit. 2019, 59, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Mendez-Villanueva, A. Effects of age, maturity and body dimensions on match running performance in highly trained under-15 soccer players. J. Sports Sci. 2014, 32, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Peñareyes, M.E.; Eisenmann, J.C.; Horta, L.; Rodrigues, J.; Miller, R. Height, mass and skeletal maturity of elite Portuguese soccer players aged 11–16 years. J. Sports Sci. 2000, 18, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring accumulated training and match load in football: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3906. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M. Test validation in sport physiology: Lessons learned from llinimetrics. Int. J. Sports Physiol. Perform. 2009, 4, 269–277. [Google Scholar] [CrossRef]
Variables | U15 (n = 102) | U17 (n = 99) | U19 (n = 120) | F | p | η2 | Post-Hoc | |
---|---|---|---|---|---|---|---|---|
External load | TD (m) | 5316.18 ± 1354.45 | 6021.45 ± 1675.64 | 4750.43 ± 1593.46 | 18.465 | 0.000 | 0.103 | a,b,c |
AvS (m·min−1) | 49.96 ± 16.35 | 56.84 ± 34.51 | 45.83 ± 15.60 | 6.192 | 0.002 | 0.037 | a | |
MRS (m·s−1) | 6.58 ± 0.82 | 7.94 ± 3.12 | 7.43 ± 1.15 | 13.014 | 0.000 | 0.075 | a,b | |
rHSR (m) | 53.23 ± 58.34 | 166.06 ± 458.95 | 72.41± 65.95 | 5.525 | 0.004 | 0.033 | a,c | |
HMLD (m) | 489.11 ± 228.44 | 730.56 ± 483.38 | 524.90 ± 291.37 | 14.395 | 0.000 | 0.082 | a,c | |
Average sprint (m) | 28.13 ± 41.66 | 130.42 ± 462.56 | 40.16 ± 50.43 | 4.773 | 0.009 | 0.029 | a,c | |
Number of sprints | 1.85 ± 2.46 | 4.83 ± 4.81 | 3.12 ± 2.92 | 18.363 | 0.000 | 0.103 | a,b,c | |
DSL (a.u.) | 247.21 ± 135.86 | 261.28 ± 121.73 | 245.19 ± 144.87 | 0.439 | 0.645 | 0.003 | - | |
ACC (m·s−2) | 33.62 ± 18.80 | 53.76 ± 20.62 | 49.90 ± 20.19 | 26.636 | 0.000 | 0.156 | a,b | |
DEC (m·s−2) | 30.27 ± 19.77 | 49.77 ± 25.08 | 44.01 ± 22.53 | 20.103 | 0.000 | 0.111 | a,b | |
Internal load | RPE (a.u.) | 13.73 ± 1.91 | 13.51 ± 1.76 | 12.45 ± 2.50 | 11.964 | 0.000 | 0.069 | a,c |
sRPE (a.u.) | 1235.29 ± 171.87 | 1215.46 ± 158.71 | 1120.24 ± 224.69 | 11.964 | 0.000 | 0.069 | a,c | |
Recovery status | TQR (a.u.) | 16.38 ± 1.92 | 16.24 ± 1.81 | 15.21 ± 2.16 | 11.923 | 0.000 | 0.103 | a,c |
Variables | MD-3 (n = 41) | MD-2 (n = 38) | MD-1 (n = 44) | F | p | η2 | Post-Hoc | |
---|---|---|---|---|---|---|---|---|
External load | TD (m) | 5372.00 ± 1452.14 | 5795.99 ± 1773.31 | 4728.01 ± 1618.62 | 9.90 | 0.000 | 0.058 | a,b |
AvS (m·min−1) | 53.11 ± 17.90 | 44.64 ± 13.71 | 51.82 ± 36.42 | 3.80 | 0.023 | 0.007 | a | |
MRS (m·s−1) | 7.50 ± 2.17 | 6.81 ± 1.00 | 7.52 ± 2.33 | 3.90 | 0.021 | 0.024 | a,c | |
rHSR (m) | 75.42 ± 63.06 | 68.45 ± 73.08 | 87.64± 102.71 | 3.29 | 0.001 | 0.001 | - | |
HMLD (m) | 591.17 ± 284.94 | 568.24 ± 287.70 | 488.79 ± 293.58 | 3.52 | 0.008 | 0.002 | - | |
Average sprint (m) | 39.71 ± 49.09 | 40.40 ± 51.11 | 58.09 ± 76.46 | 3.90 | 0.048 | 0.024 | a | |
Number of sprints | 3.13 ± 2.94 | 2.90 ± 3.71 | 3.80 ± 4.68 | 1.45 | 0.237 | 0.009 | - | |
DSL (a.u.) | 267.55 ± 144.38 | 252.17 ± 127.67 | 219.21 ± 120.30 | 3.55 | 0.030 | 0.022 | b | |
ACC (m·s−2) | 48.85 ± 22.83 | 43.58 ± 20.54 | 43.21 ±19.87 | 2.61 | 0.075 | 0.016 | - | |
DEC (m·s−2) | 45.99 ± 25.58 | 40.33 ± 20.80 | 34.44 ± 21.81 | 10.65 | 0.001 | 0.041 | b | |
Internal load | RPE (a.u.) | 13.29 ± 2.35 | 12.51 ± 1.74 | 13.27 ± 2.28 | 1.12 | 0.328 | 0.007 | - |
sRPE (a.u.) | 1196.05 ± 211.17 | 1158.05 ± 211.17 | 1194.35 ± 205.23 | 1.12 | 0.328 | 0.007 | - | |
Recovery status | TQR (a.u.) | 15.99 ± 2.26 | 15.82 ± 1.76 | 15.81 ± 1.95 | 0.10 | 0.907 | 0.002 | - |
Variables | Wk1 (n = 60) | Wk2 (n = 42) | Total (n = 122) | F | p | d | |
---|---|---|---|---|---|---|---|
External load | TD (m) | 5700.74 ± 1356.59 | 4766.80 ± 1159.89 | 5316.90 ± 1630.62 | 5.323 | 0.022 | 0.39 |
AvS (m·min−1) | 48.97 ± 19.19 | 51.38 ± 11.19 | 50.49 ± 23.61 | 12.404 | 0.000 | 0.18 | |
MRS (m·s−1) | 6.53 ± 0.81 | 6.65 ± 0.84 | 7.32 ± 1.99 | 2.777 | 0.097 | 0.23 | |
rHSR (m) | 51.23 ± 60.87 | 56.07 ± 55.11 | 94.98 ± 262.50 | 0.118 | 0.732 | 0.06 | |
HMLD (m) | 515.93 ± 216.44 | 450.79 ± 242.05 | 576.47 ± 360.56 | 0.380 | 0.538 | 0.20 | |
Average sprint (m) | 26.20 ± 41.56 | 30.88 ± 42.16 | 50.49 ± 23.61 | 0.847 | 0.358 | 0.06 | |
Number of sprints | 1.73 ± 2.02 | 2.02 ± 2.60 | 3.24 ± 3.68 | 0.136 | 0.712 | 0.16 | |
DSL (a.u.) | 249.90 ± 134.94 | 243.36 ± 138.71 | 250.74 ± 135.07 | 0.524 | 0.470 | 0.003 | |
ACC (m·s−2) | 36.35 ± 18.85 | 29.71 ± 18.25 | 45.95 ± 21.59 | 1.765 | 0.185 | 0.22 | |
DEC (m·s−2) | 30.60 ± 17.69 | 29.79 ± 22.62 | 41.44 ± 23.83 | 1.523 | 0.218 | 0.31 | |
Internal load | RPE (a.u.) | 12.83 ± 2.20 | 13.59 ± 2.10 | 13.17 ± 2.18 | 0.447 | 0.002 | 0.35 |
sRPE (a.u.) | 1154.75 ± 197.66 | 1222.65 ± 189.27 | 1185.56 ± 196.54 | 0.447 | 0.002 | 0.35 | |
Recovery status | TQR (a.u.) | 15.84 ± 2.17 | 15.96 ± 1.89 | 15.90 ± 2.05 | 3.079 | 0.608 | 0.06 |
Variables | CB (n = 79) | FB (n = 65) | CM (n = 70) | WM (n = 62) | FW (n = 48) | F | p | η2 | Post-Hoc | |
---|---|---|---|---|---|---|---|---|---|---|
External load | TD (m) | 5282.28 ± 1407.51 | 5275.94 ± 1774.61 | 5456.91 ± 1565.86 | 5370.07 ± 1692.56 | 5156.90 ± 1820.92 | 0.20 | 0.037 | 0.003 | - |
AvS (m·min−1) | 47.27 ± 13.98 | 51.15 ± 26.55 | 52.09 ± 23.08 | 52.16 ± 28.96 | 50.44 ± 25.53 | 0.47 | 0.758 | 0.007 | - | |
MRS (m·s−1) | 6.95 ± 1.04 | 7.29 ± 1.58 | 7.49 ± 1.54 | 7.28 ± 1.54 | 7.77 ± 3.77 | 1.36 | 0.246 | 0.18 | - | |
rHSR (m) | 75.32 ± 71.00 | 66.29 ± 54.89 | 82.41± 74.30 | 71.73 ± 70.04 | 91.53 ± 110.93 | 0.30 | 0.018 | 0.037 | a | |
HMLD (m) | 541.31 ± 243.65 | 548.51 ± 282.09 | 602.16 ± 275.41 | 562.16 ± 275.41 | 529.47 ± 360.56 | 0.88 | 0.475 | 0.012 | - | |
Average sprint (m) | 44.29 ± 56.91 | 51.15 ± 26.55 | 49.06 ± 57.09 | 38.84 ± 48.85 | 56.58 ± 77.79 | 3.18 | 0.14 | 0.039 | a | |
Number of sprints | 3.17 ± 3.30 | 2.69 ± 3.09 | 3.41 ± 3.63 | 3.08 ± 3.38 | 4.06 ± 5.14 | 1.02 | 0.400 | 0.013 | - | |
DSL (a.u.) | 261.17 ± 141.37 | 230.52 ± 118.24 | 265.34 ± 149.59 | 238.11 ± 135.04 | 255.98 ± 123.91 | 0.73 | 0.573 | 0.010 | - | |
ACC (m·s−2) | 44.63 ± 19.41 | 45.55 ± 20.04 | 47.77 ± 21.94 | 46.61 ± 24.01 | 45.25 ± 23.83 | 0.16 | 0.957 | 0.003 | - | |
DEC (m·s−2) | 39.63 ± 18.71 | 40.22 ± 19.51 | 43.27 ± 22.19 | 41.18 ± 25.98 | 43.75 ± 34.44 | 0.30 | 0.875 | 0.005 | - | |
Internal load | RPE (a.u.) | 261.17 ± 141.37 | 230.52 ± 118.24 | 265.34 ± 149.59 | 238.11 ± 135.04 | 255.98 ± 123.91 | 2.89 | 0.023 | 0.034 | b |
sRPE (a.u.) | 44.63 ± 19.41 | 45.55 ± 20.04 | 47.71 ± 21.94 | 46.61 ± 24.01 | 45.25 ± 23.83 | 2.89 | 0.023 | 0.034 | b | |
Recovery status | TQR (a.u.) | 39.63 ± 18.71 | 40.22 ± 19.51 | 43.27 ± 22.19 | 41.18 ± 25.98 | 43.75 ± 34.44 | 1.28 | 0.279 | 0.016 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation. Appl. Sci. 2021, 11, 4871. https://doi.org/10.3390/app11114871
Teixeira JE, Forte P, Ferraz R, Leal M, Ribeiro J, Silva AJ, Barbosa TM, Monteiro AM. Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation. Applied Sciences. 2021; 11(11):4871. https://doi.org/10.3390/app11114871
Chicago/Turabian StyleTeixeira, José E., Pedro Forte, Ricardo Ferraz, Miguel Leal, Joana Ribeiro, António J. Silva, Tiago M. Barbosa, and António M. Monteiro. 2021. "Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation" Applied Sciences 11, no. 11: 4871. https://doi.org/10.3390/app11114871
APA StyleTeixeira, J. E., Forte, P., Ferraz, R., Leal, M., Ribeiro, J., Silva, A. J., Barbosa, T. M., & Monteiro, A. M. (2021). Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation. Applied Sciences, 11(11), 4871. https://doi.org/10.3390/app11114871