Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Determination of Jw
2.3. OECT Installation
2.4. Walk-in Chamber Experiment
2.5. Ions Accumulation Rate
2.5.1. Bioristor Based Estimates
2.5.2. Analytical Determination
2.6. Meteorological Data
2.7. Data Analysis
3. Results
3.1. Sensitivity of the Bioristor to Diurnal Change of Environmental Conditions
3.2. Response of Bioristor to Water Flux Density
3.3. Disentangling Bioristor Response to Environmental Conditions
3.4. Perspective on the Use of Bioristor to Monitor Leaf Mineral Accumulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomkiewicz, D.; Piskier, T. A plant based sensing method for nutrition stress monitoring. Precis. Agric. 2012, 13, 370–383. [Google Scholar] [CrossRef]
- Briglia, N.; Montanaro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Nuzzo, V. Drought phenotyping in Vitis vinifera using RGB and NIR imaging. Sci. Hortic. 2019, 256, 108555. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Fallon, B.; Yang, A.; Lapadat, C.; Armour, I.; Juzwik, J.; Montgomery, R.A.; Cavender-Bares, J. Spectral differentiation of oak wilt from foliar fungal disease and drought is correlated with physiological changes. Tree Physiol. 2020, 40, 377–390. [Google Scholar] [CrossRef]
- Zeglio, E.; Eriksson, J.; Gabrielsson, R.; Solin, N.; Inganäs, O. Highly Stable Conjugated Polyelectrolytes for Water-Based Hybrid Mode Electrochemical Transistors. Adv. Mater. 2017, 29, 1605787. [Google Scholar] [CrossRef]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.C. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Gentile, F.; Vurro, F.; Picelli, F.; Bettelli, M.; Zappettini, A.; Coppedè, N. A mathematical model of OECTs with variable internal geometry. Sens. Actuators A Phys. 2020, 304, 111894. [Google Scholar] [CrossRef]
- Tarabella, G.; Villani, M.; Calestani, D.; Mosca, R.; Iannotta, S.; Zappettini, A.; Coppedè, N. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 2012, 22, 23830–23834. [Google Scholar] [CrossRef]
- Gentile, F.; Delmonte, D.; Solzi, M.; Villani, M.; Iannotta, S.; Zappettini, A.; Coppedè, N. A theoretical model for the time varying current in organic electrochemical transistors in a dynamic regime. Org. Electron. 2016, 35, 59–64. [Google Scholar] [CrossRef]
- Coppedè, N.; Villani, M.; Gentile, F. Diffusion Driven Selectivity in Organic Electrochemical Transistors. Sci. Rep. 2015, 4, 4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Iannotta, S.; Zappettini, A. Human stress monitoring through an organic cotton-fiber biosensor. J. Mater. Chem. B 2014, 2, 5620–5626. [Google Scholar] [CrossRef] [PubMed]
- Alcaide Zaragoza, C.; González Perea, R.; Fernández García, I.; Camacho Poyato, E.; Rodríguez Díaz, J.A. Open source ap-plication for optimum irrigation and fertilization using reclaimed water in olive orchards. Comp. Electron. Agric. 2020, 173, 105407. [Google Scholar] [CrossRef]
- Coppedè, N.; Tarabella, G.; Villani, M.; Calestani, D.; Iannotta, S.; Zappettini, A. n in vivo biosensing, biomimetic electro-chemical transistor with applications in plant science and precision farming. Sci. Rep. 2017, 7, 16195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janni, M.; Coppede, N.; Bettelli, M.; Briglia, N.; Petrozza, A.; Summerer, S.; Vurro, F.; Danzi, D.; Cellini, F.; Marmiroli, N.; et al. In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vurro, F.; Janni, M.; Coppedè, N.; Gentile, F.; Manfredi, R.; Bettelli, M.; Zappettini, A. Development of an In Vivo Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to Improve Water Productivity in Agriculture. Sensors 2019, 19, 4667. [Google Scholar] [CrossRef] [Green Version]
- Evert, R.F.; Esau, K. Structure and Development of the Plant Body—An Overview in Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development; Evert, R.F., Ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006; pp. 1–13. [Google Scholar]
- Bai, Y.; Zhu, G.; Su, Y.; Zhang, K.; Han, T.; Ma, J.; Wang, W.; Ma, T.; Feng, L. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem. Agric. For. Meteorol. 2015, 214–215, 319–327. [Google Scholar] [CrossRef]
- Takagi, K.; Tsuboya, T.; Takahashi, H. Diurnal hystereses of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool-temperate wetland. Agric. For. Meteorol. 1998, 91, 177–191. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C. Significance of fruit transpiration on calcium nutrition in developing apricot fruit. J. Plant Nutr. Soil Sci. 2010, 173, 618–622. [Google Scholar] [CrossRef]
- Nobel, P.S. Solutes in Physiochemical and Environmental Plant Physiology; Elsevier Academic Press: Cambridge, MA, USA, 2005; pp. 99–169. [Google Scholar]
- White, P.J. Ion Uptake Mechanisms of Individual Cells and Roots: Short-Distance Transport in Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: Cambridge, MA, USA, 2012; pp. 7–47. [Google Scholar]
- White, P.J. Ion Transport in Encyclopedia of Applied Plant Sciences; Thomas, B., Murphy, D.J., Murray, B.G., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 238–245. [Google Scholar]
- Steudle, E. Water uptake by plant roots: An integration of views. Plant Soil 2000, 226, 45–56. [Google Scholar] [CrossRef]
- White, P.J. Long-Distance Transport in the Xylem and Phloem in Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: Cambridge, MA, USA, 2012; pp. 49–70. [Google Scholar]
- Grantz, D.A.; Moore, P.H.; Zeiger, E. Stomatal responses to light and humidity in sugarcane: Prediction of daily time courses and identification of potential selection criteria. Plant Cell Environ. 1987, 10, 197–204. [Google Scholar]
- Celano, G.; Dichio, B.; Montanaro, G.; Nuzzo, V.; Palese, A.; Xiloyannis, C. Distribution of dry matter and amount of mineral elements in irrigated and non-irrigated olive trees. Acta Hortic. 1999, 474, 381–384. [Google Scholar] [CrossRef]
- Goudriaan, J.; van Laar, H.H. Modelling Potential Crop Growth Processes in Current Issue in Production Ecology; Goudriaan, J., van Laar, H.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; Volume 2, pp. 127–128. ISBN 9780792332190-238. [Google Scholar]
- Liao, J.; Si, H.; Zhang, X.; Lin, S. Functional Sensing Interfaces of PEDOT:PSS Organic Electrochemical Transistors for Chemical and Biological Sensors: A Mini Review. Sensors 2019, 19, 218. [Google Scholar] [CrossRef] [Green Version]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Konwarh, R.; Sharma, P.L. Nanosensor Platforms for Surveillance of Plant Pathogens and Phytometabolites/Analytes vis-à-vis Plant Health Status in Micro and Nano Technologies, Nanomaterials for Agriculture and Forestry Applications; Husen, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 357–385. [Google Scholar]
- Kundu, M.; Krishnan, P.; Kotnala, R.; Sumana, G. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci. Technol. 2019, 88, 157–178. [Google Scholar] [CrossRef]
- Siebrecht, S.; Herdel, K.; Schurr, U.; Tischner, R. Nutrient translocation in the xylem of poplar—diurnal variations and spatial distribution along the shoot axis. Planta 2003, 217, 783–793. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Xiloyannis, C. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit. J. Plant Physiol. 2015, 181, 67–74. [Google Scholar] [CrossRef]
- Honert, T.H.V.D. Water transport in plants as a catenary process. Discuss. Faraday Soc. 1948, 3, 146–153. [Google Scholar] [CrossRef]
- Dichio, B.; Montanaro, G.; Sofo, A.; Xiloyannis, C. Stem and whole-plant hydraulics in olive (Olea europaea) and kiwifruit (Actinidia deliciosa). Trees 2012, 27, 183–191. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X.; Liu, S.; Wang, P. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem. Agric. For. Meteorol. 2017, 246, 98–110. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Murray, B.R.; Barton, C.; Eamus, D. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Funct. Plant Biol. 2004, 31, 461–470. [Google Scholar] [CrossRef]
- Fiscus, E.L. Determination of Hydraulic and Osmotic Properties of Soybean Root Systems. Plant Physiol. 1977, 59, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, G.; Dichio, B.; Lang, A.; Mininni, A.N.; Nuzzo, V.; Clearwater, M.J.; Xiloyannis, C. Internal versus external control of calcium nutrition in kiwifruit. J. Plant Nutr. Soil Sci. 2014, 177, 819–830. [Google Scholar] [CrossRef]
- Domec, J.-C.; Noormets, A.; King, J.S.; Sun, G.; McNulty, S.G.; Gavazzi, M.J.; Boggs, J.L.; Treasure, E.A. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ. 2009, 32, 980–991. [Google Scholar] [CrossRef]
- Köhler, B.; Raschke, K. Loading of Ions into the Xylem of the Root in the Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions; Sattelmacher, B., Horst, W.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 181–200. [Google Scholar]
- Roddy, A.; Dawson, T. Novel patterns of hysteresis in the response of leaf-level sap flow to vapor pressure deficit. Acta Hortic. 2013, 991, 261–267. [Google Scholar] [CrossRef]
- Wang, H.; He, K.; Li, R.; Sheng, Z.; Tian, Y.; Wen, J.; Chang, B. Impact of time lags on diurnal estimates of canopy transpiration and canopy conductance from sap-flow measurements of Populus cathayana in the Qinghai–Tibetan Plateau. J. For. Res. 2016, 28, 481–490. [Google Scholar] [CrossRef]
- Meidner, H.; Mansfield, T.A. Stomatal responses to illumination. Biol. Rev. 1965, 40, 483–508. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, D.; Montanaro, G.; Vurro, F.; Coppedé, N.; Briglia, N.; Petrozza, A.; Janni, M.; Zappettini, A.; Cellini, F.; Nuzzo, V. Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation. Appl. Sci. 2021, 11, 4729. https://doi.org/10.3390/app11114729
Amato D, Montanaro G, Vurro F, Coppedé N, Briglia N, Petrozza A, Janni M, Zappettini A, Cellini F, Nuzzo V. Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation. Applied Sciences. 2021; 11(11):4729. https://doi.org/10.3390/app11114729
Chicago/Turabian StyleAmato, Davide, Giuseppe Montanaro, Filippo Vurro, Nicola Coppedé, Nunzio Briglia, Angelo Petrozza, Michela Janni, Andrea Zappettini, Francesco Cellini, and Vitale Nuzzo. 2021. "Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation" Applied Sciences 11, no. 11: 4729. https://doi.org/10.3390/app11114729