#
Wave Packet Dynamical Simulation of Quasiparticle Interferences in 2D Materials^{ †}

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

^{2}carbon nanosystems by using a variationally calculated local carbon one-electron pseudopotential [21]. This pseudopotential has two major advantages: (i) it brings the specific electronic dynamics of the bands (linear dispersion near the K points for electrons near the Fermi energy (E

_{F}), trigonal warping for hot electrons, etc.) into the WPD calculation and (ii) it allows us to handle localized defects. We were able to exploit this feature of the pseudopotential in calculating the transport properties of different 0D and 1D graphene defects [22,23].

_{2}single layers [20] and now we extend it for graphene structural defects opening the way for the WPD investigations of defect scattering processes in other 2D materials.

## 2. Bloch Function Wave Packet Construction, Time Evolution and Scattering in Graphene

## 3. Band Structure Governed Wave Packet Dynamics

_{2}single sheets in Reference [20]. Those calculations successfully reproduced the trigonal warping effect and the anisotropic WP spreading characteristic of these 2D materials and showed different symmetries of the WP spreading, depending on the band structure and the spectral distribution of the initial WP. As we emphasized in Reference [20], similar calculations can be easily performed for any crystalline material, where the dispersion relation is known.

## 4. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## References

- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano
**2011**, 5, 26–41. [Google Scholar] [CrossRef][Green Version] - Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater.
**2016**, 3, 022002. [Google Scholar] [CrossRef] - Jiang, J.; Xu, T.; Lu, J.; Sun, L.; Ni, Z. Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research
**2019**, 4641739. [Google Scholar] [CrossRef] [PubMed][Green Version] - Chen, J.-H.; Cullen, W.G.; Jang, C.; Fuhrer, M.S.; Williams, E.D. Defect Scattering in Graphene. Phys. Rev. Lett.
**2009**, 102, 236805. [Google Scholar] [CrossRef] - Yu, Q.; Jauregui, L.A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater.
**2011**, 10, 443–449. [Google Scholar] [CrossRef] [PubMed][Green Version] - Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun.
**2013**, 4, 2642. [Google Scholar] [CrossRef] [PubMed] - Chen, L.; Cheng, P.; Wu, K. Quasiparticle interference in unconventional 2D systems. J. Phys. Condens. Matter
**2017**, 29, 103001. [Google Scholar] [CrossRef] - Avraham, N.; Reiner, J.; Kumar-Nayak, A.; Morali, N.; Batabyal, R.; Yan, B.; Beidenkopf, H. Quasiparticle Interference Studies of Quantum Materials. Adv. Mater.
**2018**, 30, 1707628. [Google Scholar] [CrossRef] - Friedel, J. Metallic alloys. Suppl. Nuovo Cimento
**1958**, 7, 287–311. [Google Scholar] [CrossRef] - Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys.
**2006**, 2, 620–625. [Google Scholar] [CrossRef][Green Version] - Yin, J.-X.; Pan, S.H.; Hasan, M.Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys.
**2021**, 3, 249–263. [Google Scholar] [CrossRef] - Brihuega, I.; Mallet, P.; Bena, C.; Bose, S.; Michaelis, C.; Vitali, L.; Varchon, F.; Magaud, L.; Kern, K.; Veuillen, J.Y. Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale. Phys. Rev. Lett.
**2008**, 101, 206802. [Google Scholar] [CrossRef][Green Version] - Mallet, P.; Brihuega, I.; Bose, S.; Ugeda, M.M.; Gómez-Rodríguez, J.M.; Kern, K.; Veuillen, J.Y. Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy. Phys. Rev. B
**2012**, 86, 045444. [Google Scholar] [CrossRef][Green Version] - Dombrowski, D.; Jolie, W.; Petrović, M.; Runte, S.; Craes, F.; Klinkhammer, J.; Kralj, M.; Lazić, P.; Sela, E.; Busse, C. Energy-Dependent Chirality Effects in Quasifree-Standing Graphene. Phys. Rev. Lett.
**2017**, 118, 116401. [Google Scholar] [CrossRef] - Simon, L.; Bena, C.; Vonau, F.; Cranney, M.; Aubel, D. Fourier-transform scanning tunnelling spectroscopy: The possibility to obtain constantenergy maps and band dispersion using a local measurement. J. Phys. D Appl. Phys.
**2011**, 44, 464010. [Google Scholar] [CrossRef][Green Version] - Zhang, D.-B.; Han, Q.; Wang, Z.D. Local and global patterns in quasiparticle interference: A reduced response function approach. Phys. Rev. B
**2019**, 100, 205112. [Google Scholar] [CrossRef][Green Version] - Garraway, B.M.; Suominen, K.-A. Wave-packet dynamics: New physics and chemistry in femto-time. Rep. Prog. Phys.
**1995**, 58, 365–419. [Google Scholar] [CrossRef] - Márk, G.I.; Vancsó, P.; Hwang, C.; Lambin, P.; Biró, L.P. Anisotropic dynamics of charge carriers in graphene. Phys. Rev. B
**2012**, 85, 125443. [Google Scholar] [CrossRef][Green Version] - Vancsó, P.; Márk, G.I.; Lambin, P.; Mayer, A.; Hwang, C.; Biró, L.P. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study. Appl. Surf. Sci.
**2014**, 291, 58–63. [Google Scholar] [CrossRef][Green Version] - Márk, G.I.; Fejér, G.R.; Vancsó, P.; Lambin, P.; Biró, L.P. Electronic Dynamics in Graphene and MoS
_{2}Systems. Phys. Status Solidi B**2017**, 254, 1700179. [Google Scholar] [CrossRef] - Mayer, A. Band structure and transport properties of carbon nanotubes using a local pseudopotential and a transfer-matrix technique. Carbon
**2004**, 42, 2057–2066. [Google Scholar] [CrossRef] - Kvashnin, D.G.; Vancsó, P.; Antipina, L.Y.; Márk, G.I.; Biró, L.P.; Sorokin, P.B.; Chernozatonskii, L.A. Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes. Nano Res.
**2015**, 8, 1250–1258. [Google Scholar] [CrossRef][Green Version] - Vancsó, P.; Márk, G.I.; Lambin, P.; Mayer, A.; Kim, Y.-S.; Hwang, C.; Biró, L.P. Electronic transport through ordered and disordered graphene grain boundaries. Carbon
**2013**, 64, 101–110. [Google Scholar] [CrossRef][Green Version] - Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev.
**1959**, 115, 809–821. [Google Scholar] [CrossRef] - Marzari, N.; Mostofi, A.A.; Yates, J.R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys.
**2012**, 84, 1419–1475. [Google Scholar] [CrossRef][Green Version] - Fleck, J.A.; Morris, J.R.; Feit, M.D. Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys.
**1976**, 10, 129–160. [Google Scholar] [CrossRef] - Feit, M.D.; Fleck, J.A.; Steiger, A. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys.
**1982**, 47, 412–433. [Google Scholar] [CrossRef] - Márk, G.I. Web-Schrödinger: Program for the interactive solution of the time dependent and stationary two dimensional (2D) Schrödinger equation. arXiv
**2020**, arXiv:2004.10046. [Google Scholar] - Bácsi, Á.; Virosztek, A. Local density of states and Friedel oscillations in graphene. Phys. Rev. B
**2010**, 82, 193405. [Google Scholar] [CrossRef][Green Version] - Simon, L.; Bena, C.; Vonau, F.; Aubel, D.; Nasrallah, H.; Habar, M.; Peruchetti, J.C. Symmetry of standing waves generated by a point defect in epitaxial graphene. Eur. Phys. J. B
**2009**, 69, 351–355. [Google Scholar] [CrossRef] - Calogero, G.; Papior, N.; Koleini, M.; Larsen, M.H.L.; Brandbyge, M. Multi-scale approach to first-principles electron transport beyond 100 nm. Nanoscale
**2019**, 11, 6153–6164. [Google Scholar] [CrossRef] - Settnes, M.; Power, S.R.; Petersen, D.H.; Jauho, A.-P. Theoretical Analysis of a Dual-Probe Scanning Tunneling Microscope Setup on Graphene. Phys. Rev. Lett.
**2014**, 112, 096801. [Google Scholar] [CrossRef] [PubMed][Green Version] - Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys.
**1948**, 20, 367–387. [Google Scholar] [CrossRef][Green Version] - Ogg, N.R. A Huygen’s principle for anisotropic media. J. Phys. A Gen. Phys.
**1971**, 4, 382–388. [Google Scholar] [CrossRef] - Kaasbjerg, K.; Martiny, J.H.J.; Low, T.; Jauho, A.-P. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides. Phys. Rev. B
**2017**, 96, 241411. [Google Scholar] [CrossRef][Green Version] - Liu, H.; Chen, J.; Yu, H.; Yang, F.; Jiao, L.; Liu, G.-B.; Ho, W.; Gao, C.; Jia, J.; Yao, W.; et al. Observation of intervalley quantum interference in epitaxial monolayer tungsten diselenide. Nat. Commun.
**2015**, 6, 8180. [Google Scholar] [CrossRef] [PubMed][Green Version] - Iaia, D.; Chang, G.; Chang, T.-R.; Hu, J.; Mao, Z.; Lin, H.; Yan, S.; Madhavan, V. Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2. npj Quantum Mater.
**2018**, 3, 38. [Google Scholar] [CrossRef] - Choi, Y.; Kemmer, J.; Peng, Y.; Thomson, A.; Arora, H.; Polski, R.; Zhang, Y.; Ren, H.; Alicea, J.; Refael, G.; et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys.
**2019**, 15, 1174–1180. [Google Scholar] [CrossRef] - Andrei, E.Y.; MacDonald, A.H. Graphene bilayers with a twist. Nat. Mater.
**2020**, 19, 1265–1275. [Google Scholar] [CrossRef]

**Figure 1.**Construction of the graphene Bloch wave functions for different points along the ΓK line in the extended Brillouin zone. Left column: ${e}^{i{\overrightarrow{k}}_{Bloch}\overrightarrow{r}}$. Middle column: $u\left(\overrightarrow{r},{\overrightarrow{k}}_{Bloch}\right)$. Right column: $\phi \left(\overrightarrow{r},{\overrightarrow{k}}_{Bloch}\right)$. See Section 2 for details. Real parts of the wave functions are shown, green is positive, red is negative. The graphene lattice is shown by blue lines. The insets in a, d, g, j show the position of ${\overrightarrow{k}}_{Bloch}$ (yellow dot) relative to the Brillouin zone.

**Figure 2.**Time evolution of the probability density of a Bloch function wave packet in the graphene pseudopotential. (

**a**–

**c**) Without defect. (

**d**–

**f**) With defect. (

**g**) Spectral distribution of the Bloch function wave packet in the Brillouin zone, only the real part of $a\left(\overrightarrow{k}\right)$ is shown. The red bar shows the reciprocal space width $\mathsf{\Delta}k$. (

**h**) Scattering pattern, absolute value of the difference of the WPs shown on (

**c**,

**f**). The size of the calculation window is 14.48 nm. (see Video S1 for the time development of the Bloch WP).

**Figure 4.**Time evolution of the probability density of a wave packet on the graphene surface with- and without defect. The band structure of the perfect crystal is incorporated into the kinetic energy operator, hence the potential is everywhere zero, except in the defect region. (

**a**–

**c**) Without defect. (

**d**–

**f**) With defect. The defect is shown by a blue spot. (

**g**) Spectral distribution of the initial wave packet in the Brillouin zone (absolute value) is shown by red circles in the K and K’ points, superimposed on the graphene band structure. The radius of the red circles is $\mathsf{\Delta}k/2$, the intensity of the red color is proportional to the spectral weight at each $\left({\overrightarrow{k}}_{x},{\overrightarrow{k}}_{y}\right)$ points. (

**h**) Scattering pattern, absolute value of the difference of the WPs shown on (

**c**,

**f**). The size of the calculation window is 23.04 nm.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vancsó, P.; Mayer, A.; Nemes-Incze, P.; Márk, G.I. Wave Packet Dynamical Simulation of Quasiparticle Interferences in 2D Materials. *Appl. Sci.* **2021**, *11*, 4730.
https://doi.org/10.3390/app11114730

**AMA Style**

Vancsó P, Mayer A, Nemes-Incze P, Márk GI. Wave Packet Dynamical Simulation of Quasiparticle Interferences in 2D Materials. *Applied Sciences*. 2021; 11(11):4730.
https://doi.org/10.3390/app11114730

**Chicago/Turabian Style**

Vancsó, Péter, Alexandre Mayer, Péter Nemes-Incze, and Géza István Márk. 2021. "Wave Packet Dynamical Simulation of Quasiparticle Interferences in 2D Materials" *Applied Sciences* 11, no. 11: 4730.
https://doi.org/10.3390/app11114730