A New Method to Evaluate Trueness and Precision of Digital and Conventional Impression Techniques for Complete Dental Arch
Abstract
:1. Introduction
2. Material and Methods
2.1. Fabrication of the Master Model, Definitive Casts, and Digital Models
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The new method was reliable to evaluate the three-dimensional accuracy of complete-arch impressions.
- Conventional impressions showed a more accurate absolute trueness than intraoral digital scans in x, y, z coordinates, as well as the linear three-dimensional distance, ΔD.
- Conventional impression also showed more accurate precision than intraoral digital scans in the x, y, and z coordinates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perakis, N.; Belser, U.C.; Magne, P. Final impressions: A review of material properties and description of a current technique. Int. J. Periodontics Restor. Dent. 2004, 24, 109–117. [Google Scholar]
- Chandran, D.T.; Jagger, D.C.; Jagger, R.G.; Barbour, M.E. Two- and three-dimensional accuracy of dental impression materials: Effects of storage time and moisture contamination. Bio-Med. Mater. Eng. 2010, 20, 243–249. [Google Scholar] [CrossRef]
- Soğanci, G.; Cinar, D.; Caglar, A.; Yagiz, A. 3D evaluation of the effect of disinfectants on dimensional accuracy and stability of two elastomeric impression materials. Dent. Mater. J. 2018, 37, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Dounis, K.S.; Dounis, G.; Ditmyer, M.M.; Ziebert, G.J. Accuracy of successive casts for full-arch fixed prostheses. Int. J. Prosthodont. 2010, 23, 446–449. [Google Scholar] [PubMed]
- Shah, S.; Sundaram, G.; Bartlett, D.; Sherriff, M. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques. J. Dent. 2004, 32, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Robben, J.; Muallah, J.; Wesemann, C.; Nowak, R.; Mah, J.; Pospiech, P.; Bumann, A. Suitability and accuracy of CBCT model scan: An in vitro study. Int. J. Comput. Dent. 2018, 20, 363–375. [Google Scholar]
- Thongthammachat, S.; Moore, B.K.; Barco, M.T.; Hovijitra, S.; Brown, D.T.; Andres, C.J. Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. J. Prosthodont. 2002, 11, 98–108. [Google Scholar] [CrossRef]
- Vitti, R.P.; Da Silva, M.A.B.; Consani, R.L.X.; Sinhoreti, M.A.C. Dimensional Accuracy of Stone Casts Made from Silicone-Based Impression Materials and Three Impression Techniques. Braz. Dent. J. 2013, 24, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Mann, K.; Davids, A.; Range, U.; Richter, G.; Boening, K.; Reitemeier, B. Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials. J. Prosthet. Dent. 2015, 113, 316–322. [Google Scholar] [CrossRef]
- Kim, S.; Nicholls, J.I.; Han, C.-H.; Lee, K.-W. Displacement of implant components from impressions to definitive casts. Int. J. Oral Maxillofac. Implant. 2006, 21, 745–755. [Google Scholar]
- Kwon, J.-H.; Son, Y.-H.; Han, C.-H.; Kim, S. Accuracy of implant impressions without impression copings: A three-dimensional analysis. J. Prosthet. Dent. 2011, 105, 367–373. [Google Scholar] [CrossRef]
- Joda, T.; Zarone, F.; Ferrari, M. The complete digital workflow in fixed prosthodontics: A systematic review. BMC Oral Health 2017, 17, 124. [Google Scholar] [CrossRef]
- Joda, T.; Brägger, U. Time-Efficiency Analysis Comparing Digital and Conventional Workflows for Implant Crowns: A Prospective Clinical Crossover Trial. Int. J. Oral Maxillofac. Implant. 2015, 30, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Ahlholm, P.; Sipilä, K.; Vallittu, P.; Jakonen, M.; Kotiranta, U. Digital Versus Conventional Impressions in Fixed Prosthodontics: A Review. J. Prosthodont. 2018, 27, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkūnas, V.; Gečiauskaitė, A.; Jegelevičius, D.; Vaitiekūnas, M. Accuracy of digital implant impressions with intraoral scanners. A systematic review. Eur. J. Oral Implant. 2017, 10 (Suppl. 1), 101–120. [Google Scholar]
- Chochlidakis, K.M.; Papaspyridakos, P.; Geminiani, A.; Chen, C.-J.; Feng, I.J.; Ercoli, C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Kim, S. Effect of number of pontics and impression technique on the accuracy of four-unit monolithic zirconia fixed dental prostheses. J. Prosthet. Dent. 2018, 119, 860-e1. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015, 46, 9–17. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Full arch scans: Conventional versus digital impressions--an in-vitro study. Int. J. Comput. Dent. 2011, 14, 11–21. [Google Scholar] [CrossRef]
- Patzelt, S.B.M.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2014, 18, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.; Rodriguez, J.; Weisbloom, M.; Petridis, H. Comparison of Accuracy Between a Conventional and Two Digital Intraoral Impression Techniques. Int. J. Prosthodont. 2018, 31, 107–113. [Google Scholar] [CrossRef]
- Tomita, Y.; Uechi, J.; Konno, M.; Sasamoto, S.; Iijima, M.; Mizoguchi, I. Accuracy of digital models generated by conventional impression/plaster-model methods and intraoral scanning. Dent. Mater. J. 2018, 37, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhr, F.; Schmidt, A.; Rehmann, P.; Wöstmann, B. A new method for assessing the accuracy of full arch impressions in patients. J. Dent. 2016, 55, 68–74. [Google Scholar] [CrossRef]
- Su, T.-S.; Sun, J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: An in-vitro study. J. Prosthodont. Res. 2015, 59, 236–242. [Google Scholar] [CrossRef]
- Güth, J.-F.; Edelhoff, D.; Schweiger, J.; Keul, C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin. Oral Investig. 2016, 20, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://applications.zeiss.com/C1257A26006EFF9E/0/DC5EC1E87A19912DC1257A3900659A80/$FILE/EN_60_020_0166II_ZEISS_Bridge-type-CMMs.pdf (accessed on 18 May 2021).
- Available online: https://support.3dsystems.com/s/article/3D-Systems-Software-Certification?language=en_US (accessed on 2 May 2020).
ICC (95% CI) | p | ||
---|---|---|---|
Master model | Δx | 1.000 (1.000–1.000) | <0.001 |
Δy | 1.000 (1.000–1.000) | <0.001 | |
Δz | 1.000 (1.000–1.000) | <0.001 | |
Group CI | Δx | 1.000 (1.000–1.000) | <0.001 |
Δy | 1.000 (1.000–1.000) | <0.001 | |
Δz | 1.000 (1.000–1.000) | <0.001 | |
Group IOS | Δx | 1.000 (1.000–1.000) | <0.001 |
Δy | 1.000 (1.000–1.000) | <0.001 | |
Δz | 1.000 (1.000–1.000) | <0.001 | |
Operators | 1.000 (1.000–1.000) | <0.001 |
Δx | Δy | Δz | ΔD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Position | Group CI | Group IOS | p | Group CI | Group IOS | p | Group CI | Group IOS | p | Group CI | Group IOS | p |
#17C | 0.086 ± 0.024 | 0.054±0.027 | <0.001 | 0.086±0.024 | 0.054±0.027 | <0.001 | ||||||
#16C | 0.068 ± 0.018 | 0.039 ± 0.022 | <0.001 | 0.005 ± 0.005 | 0.015 ± 0.012 | <0.001 | 0.004 ± 0.004 | 0.012 ± 0.009 | 0.001 | 0.069 ± 0.018 | 0.048 ± 0.019 | <0.001 |
#15C | 0.047 ± 0.016 | 0.028 ± 0.016 | <0.001 | 0.005 ± 0.004 | 0.018 ± 0.014 | <0.001 | 0.007 ± 0.007 | 0.016 ± 0.011 | 0.003 | 0.048 ± 0.016 | 0.041 ± 0.019 | 0.111 |
#14C | 0.032 ± 0.013 | 0.023 ± 0.015 | 0.033 | 0.008 ± 0.005 | 0.019 ± 0.014 | 0.001 | 0.008 ± 0.011 | 0.015 ± 0.011 | 0.018 | 0.036 ± 0.013 | 0.038 ± 0.015 | 0.665 |
#13C | 0.025 ± 0.010 | 0.020 ± 0.013 | 0.107 | 0.011 ± 0.005 | 0.015 ± 0.012 | 0.106 | 0.008 ± 0.013 | 0.014 ± 0.012 | 0.092 | 0.031 ± 0.013 | 0.034 ± 0.012 | 0.377 |
#12C | 0.009 ± 0.006 | 0.010 ± 0.007 | 0.666 | 0.008 ± 0.005 | 0.009 ± 0.006 | 0.504 | 0.005 ± 0.010 | 0.012 ± 0.010 | 0.015 | 0.015 ± 0.011 | 0.021 ± 0.008 | 0.017 |
#21C | 0.007 ± 0.006 | 0.019 ± 0.011 | <0.001 | 0.015 ± 0.008 | 0.012 ± 0.010 | 0.247 | 0.008 ± 0.010 | 0.011 ± 0.007 | 0.241 | 0.021 ± 0.009 | 0.029 ± 0.010 | 0.012 |
#22C | 0.013 ± 0.015 | 0.045 ± 0.027 | <0.001 | 0.031 ± 0.015 | 0.018 ± 0.012 | 0.002 | 0.014 ± 0.018 | 0.022 ± 0.015 | 0.089 | 0.040 ± 0.021 | 0.058 ± 0.023 | 0.006 |
#23C | 0.020 ± 0.019 | 0.063 ± 0.043 | <0.001 | 0.045 ± 0.015 | 0.022 ± 0.017 | <0.001 | 0.015 ± 0.016 | 0.026 ± 0.020 | 0.029 | 0.055 ± 0.023 | 0.079 ± 0.037 | 0.006 |
#24C | 0.019 ± 0.019 | 0.080 ± 0.057 | <0.001 | 0.057 ± 0.015 | 0.039 ± 0.017 | <0.001 | 0.012 ± 0.011 | 0.030 ± 0.021 | 0.001 | 0.064 ± 0.018 | 0.102 ± 0.050 | 0.001 |
#25C | 0.023 ± 0.023 | 0.100 ± 0.072 | <0.001 | 0.071 ± 0.017 | 0.058 ± 0.025 | 0.036 | 0.011 ± 0.010 | 0.029 ± 0.021 | <0.001 | 0.078 ± 0.022 | 0.126 ± 0.067 | 0.002 |
#26C | 0.029 ± 0.026 | 0.109 ± 0.081 | <0.001 | 0.095 ± 0.026 | 0.087 ± 0.040 | 0.426 | 0.009 ± 0.010 | 0.019 ± 0.012 | 0.001 | 0.102 ± 0.030 | 0.147 ± 0.080 | 0.013 |
#27C | 0.033 ± 0.029 | 0.117 ± 0.094 | <0.001 | 0.111 ± 0.033 | 0.099 ± 0.058 | 0.386 | 0.118 ± 0.038 | 0.160 ± 0.099 | 0.051 | |||
Overall | 0.032 ± 0.029 | 0.055 ± 0.058 | <0.001 | 0.038 ± 0.038 | 0.035 ± 0.050 | 0.183 | 0.009 ± 0.012 | 0.019 ± 0.016 | <0.001 | 0.059 ± 0.037 | 0.072 ± 0.064 | 0.001 |
Group CI | Group IOS | p | |
---|---|---|---|
Δx | 0.003 ± 0.001 | 0.007 ± 0.001 | 0.001 |
Δy | 0.007 ± 0.001 | 0.010 ± 0.001 | 0.024 |
Δz | 0.003 ± 0.001 | 0.008 ± 0.001 | <0.001 |
ΔD | 0.010 ± 0.001 | 0.014 ± 0.001 | 0.006 |
Δx | Δy | Δz | |||||||
---|---|---|---|---|---|---|---|---|---|
Position | Group CI | Group IOS | p | Group CI | Group IOS | p | Group CI | Group IOS | p |
#17C | 0.026 ± 0.023 | 0.032 ± 0.023 | 0.004 | ||||||
#16C | 0.018 ± 0.018 | 0.026 ± 0.019 | <0.001 | 0.007 ± 0.007 | 0.022 ± 0.016 | <0.001 | 0.007 ± 0.006 | 0.015 ± 0.010 | <0.001 |
#15C | 0.017 ± 0.014 | 0.019 ± 0.014 | 0.15 | 0.007 ± 0.006 | 0.026 ± 0.019 | <0.001 | 0.011 ± 0.010 | 0.022 ± 0.015 | <0.001 |
#14C | 0.014 ± 0.012 | 0.021 ± 0.015 | <0.001 | 0.006 ± 0.004 | 0.027 ± 0.020 | <0.001 | 0.014 ± 0.014 | 0.022 ± 0.015 | <0.001 |
#13C | 0.011 ± 0.010 | 0.019 ± 0.013 | <0.001 | 0.015 ± 0.016 | 0.020 ± 0.014 | <0.001 | 0.015 ± 0.016 | 0.020 ± 0.014 | <0.001 |
#12C | 0.006 ± 0.005 | 0.012 ± 0.009 | <0.001 | 0.009 ± 0.013 | 0.013 ± 0.009 | <0.001 | 0.009 ± 0.013 | 0.013 ± 0.009 | <0.001 |
#21C | 0.008 ± 0.006 | 0.017 ± 0.013 | <0.001 | 0.009 ± 0.007 | 0.018 ± 0.014 | <0.001 | 0.012 ± 0.013 | 0.014 ± 0.010 | 0.003 |
#22C | 0.015 ± 0.017 | 0.045 ± 0.032 | <0.001 | 0.017 ± 0.013 | 0.024 ± 0.017 | <0.001 | 0.023 ± 0.023 | 0.025 ± 0.017 | 0.238 |
#23C | 0.029 ± 0.023 | 0.063 ± 0.049 | <0.001 | 0.016 ± 0.015 | 0.021 ± 0.015 | <0.001 | 0.025 ± 0.022 | 0.032 ± 0.023 | <0.001 |
#24C | 0.027 ± 0.022 | 0.083 ± 0.064 | <0.001 | 0.016 ± 0.013 | 0.020 ± 0.014 | 0.001 | 0.021 ± 0.018 | 0.033 ± 0.024 | <0.001 |
#25C | 0.035 ± 0.028 | 0.106 ± 0.081 | <0.001 | 0.020 ± 0.015 | 0.029 ± 0.021 | <0.001 | 0.019 ± 0.015 | 0.028 ± 0.022 | <0.001 |
#26C | 0.045 ± 0.034 | 0.126 ± 0.099 | <0.001 | 0.029 ± 0.022 | 0.044 ± 0.036 | <0.001 | 0.013 ± 0.011 | 0.018 ± 0.014 | <0.001 |
#27C | 0.049 ± 0.039 | 0.143 ± 0.109 | <0.001 | 0.038 ± 0.029 | 0.064 ± 0.053 | <0.001 | |||
Overall | 0.023 ± 0.025 | 0.054 ± 0.069 | <0.001 | 0.015 ± 0.017 | 0.027 ± 0.027 | <0.001 | 0.015 ± 0.016 | 0.022 ± 0.018 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, K.; Kim, S. A New Method to Evaluate Trueness and Precision of Digital and Conventional Impression Techniques for Complete Dental Arch. Appl. Sci. 2021, 11, 4612. https://doi.org/10.3390/app11104612
Seo K, Kim S. A New Method to Evaluate Trueness and Precision of Digital and Conventional Impression Techniques for Complete Dental Arch. Applied Sciences. 2021; 11(10):4612. https://doi.org/10.3390/app11104612
Chicago/Turabian StyleSeo, KweonSoo, and Sunjai Kim. 2021. "A New Method to Evaluate Trueness and Precision of Digital and Conventional Impression Techniques for Complete Dental Arch" Applied Sciences 11, no. 10: 4612. https://doi.org/10.3390/app11104612
APA StyleSeo, K., & Kim, S. (2021). A New Method to Evaluate Trueness and Precision of Digital and Conventional Impression Techniques for Complete Dental Arch. Applied Sciences, 11(10), 4612. https://doi.org/10.3390/app11104612