Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips
Abstract
:1. Introduction
2. Related Work
2.1. Clustering
2.2. Routing and Modeling
3. Evaluation Framework
3.1. Overview
3.2. Methodology
3.3. Data Reduction
3.4. Data Structure
3.5. Route Combination
Algorithm 1 Evaluate route alternatives for trip flows. |
Input: Origin and destination of a flow. |
Output: List with the route alternatives for the flow. |
1: get_driving_way(, ) |
2: |
3: |
4: |
5: none |
6: |
7: push( |
8: push(, ) |
9: |
10: for do |
11: if then |
12: if then |
13: pop() |
14: push(, ) |
15: else |
16: push(, ) |
17: push(, ) |
18: end if |
19: |
20: end if |
21: end for |
22: |
23: for do |
24: for do |
25: get_options(, , , ) |
26: concat(, ) |
27: end for |
28: end for |
4. User Experience Model
4.1. Core
4.2. Mode Transfer Cost
4.3. Experience in Different Route Segments
4.4. Experiment Instances
4.5. Individual Route Selection
5. Results and Discussion
5.1. Data Characterization
5.1.1. Taxi Data
5.1.2. Traffic Data
5.1.3. Bicycle Data
5.1.4. Routing Data
5.2. Pre-Processing
5.3. Data Reduction
5.4. Clustering Evaluation
5.5. Active Transportation Acceptability
5.6. Hybrid Multimodal Routing
5.7. Route Selection Based on Profiles
6. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soriano, F.R.; Samper-Zapater, J.J.; Martinez-Dura, J.J.; Cirilo-Gimeno, R.V.; Plume, J.M. Smart Mobility Trends: Open Data and Other Tools. IEEE Intell. Transp. Syst. Mag. 2018, 10, 6–16. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Li, Y.; Zhang, F.; Xu, C.; He, T. Exploring Human Mobility with Multi-Source Data at Extremely Large Metropolitan Scales. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 201–212. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, S.; Ordóñez-Hurtado, R.; Pilla, F.; Russo, G.; Timoney, D.; Shorten, R. A Context-Aware E-Bike System to Reduce Pollution Inhalation While Cycling. IEEE Trans. Intell. Transp. Syst. 2019, 20, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Quercia, D.; Schifanella, R.; Aiello, L.M. The Shortest Path to Happiness: Recommending Beautiful, Quiet, and Happy Routes in the City. In Proceedings of the 25th ACM Conference on Hypertext and Social Media, Santiago, Chile, 1–4 September 2014; pp. 116–125. [Google Scholar] [CrossRef]
- Campigotto, P.; Rudloff, C.; Leodolter, M.; Bauer, D. Personalized and Situation-Aware Multimodal Route Recommendations: The FAVOUR Algorithm. IEEE Trans. Intell. Transp. Syst. 2017, 18, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Houshmand, A.; Cassandras, C.G. Eco-Routing of Plug-In Hybrid Electric Vehicles in Transportation Networks. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1508–1513. [Google Scholar] [CrossRef]
- Rodrigues, D.O.; Fernandes, J.T.; Curado, M.; Villas, L.A. Hybrid Context-Aware Multimodal Routing. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2250–2255. [Google Scholar] [CrossRef]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Dotoli, M.; Zgaya, H.; Russo, C.; Hammadi, S. A Multi-Agent Advanced Traveler Information System for Optimal Trip Planning in a Co-Modal Framework. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2397–2412. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Chen, Y.; Mahmassani, H.S. Recognizing Network Trip Patterns Using a Spatio-Temporal Vehicle Trajectory Clustering Algorithm. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2548–2557. [Google Scholar] [CrossRef]
- Pang, J.; Huang, J.; Yang, X.; Wang, Z.; Yu, H.; Huang, Q.; Yin, B. Discovering Fine-Grained Spatial Pattern From Taxi Trips: Where Point Process Meets Matrix Decomposition and Factorization. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3208–3219. [Google Scholar] [CrossRef]
- Zhong, G.; Wan, X.; Zhang, J.; Yin, T.; Ran, B. Characterizing Passenger Flow for a Transportation Hub Based on Mobile Phone Data. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1507–1518. [Google Scholar] [CrossRef]
- El Mahrsi, M.K.; Côme, E.; Oukhellou, L.; Verleysen, M. Clustering Smart Card Data for Urban Mobility Analysis. IEEE Trans. Intell. Transp. Syst. 2017, 18, 712–728. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, D.; Gao, Y.; Wu, L.; Zhang, P.; Liu, Y. A Stepwise Spatio-temporal Flow Clustering Method for Discovering Mobility Trends. IEEE Access 2018, 6, 44666–44675. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An Algorithm for Clustering Spatial–temporal Data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Amar, H.M.; Drawil, N.M.; Basir, O.A. Traveler Centric Trip Planning: A Behavioral-Driven System. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1521–1537. [Google Scholar] [CrossRef]
- Ben-Akiva, M.; Bierlaire, M. Discrete Choice Models with Applications to Departure Time and Route Choice. In Handbook of Transportation Science; Hall, R.W., Ed.; Springer: New York, NY, USA, 2003; pp. 7–37. [Google Scholar] [CrossRef]
- Hrnčíř, J.; Žilecký, P.; Song, Q.; Jakob, M. Practical Multicriteria Urban Bicycle Routing. IEEE Trans. Intell. Transp. Syst. 2017, 18, 493–504. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Zimek, A.; Sander, J. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 2015, 10, 1–51. [Google Scholar] [CrossRef]
- Thorpe, J.A. Curvature of Plane Curves. In Elementary Topics in Differential Geometry; Springer: New York, NY, USA, 1979; pp. 62–67. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J. Accelerated Hierarchical Density Based Clustering. In Proceedings of the IEEE International Conference on Data Mining Workshops, New Orleans, LA, USA, 18–21 November 2017; pp. 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Yamashita, N. On a Global Complexity Bound of the Levenberg-Marquardt Method. J. Optim. Theory Appl. 2010, 147, 443–453. [Google Scholar] [CrossRef]
- Lorimer, T.; Held, J.; Stoop, R. Clustering: How Much Bias Do We Need? Philos. Trans. R. Soc. A 2017, 375, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latapy, M.; Fiore, M.; Ziviani, A. Link Streams: Methods and Applications. Comput. Netw. 2019, 150, 263–265. [Google Scholar] [CrossRef]
- Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. ACM Commun. 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer Networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef] [Green Version]
- Sharifzadeh, M.; Shahabi, C. VoR-Tree: R-trees with Voronoi Diagrams for Efficient Processing of Spatial Nearest Neighbor Queries. Proc. VLDB Endow. 2010, 3, 1231–1242. [Google Scholar] [CrossRef]
- Zheng, Y.U. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [Google Scholar] [CrossRef]
- Rodrigues, D.O.; Boukerche, A.; Silva, T.H.; Loureiro, A.A.F.; Villas, L.A. SMAFramework: Urban Data Integration Framework for Mobility Analysis in Smart Cities. In Proceedings of the 20th ACM Int’l Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, Miami, FL, USA, 21–25 November 2017; pp. 227–236. [Google Scholar] [CrossRef]
- Buchanan, J.M. Opportunity Cost. In The World of Economics; Eatwell, J., Milgate, M., Newman, P., Eds.; Palgrave Macmillan: London, UK, 1991; pp. 520–525. [Google Scholar] [CrossRef]
- Bruzelius, N.A. Microeconomic Theory and Generalised Cost. Transportation 1981, 10, 233–245. [Google Scholar] [CrossRef]
- Wardman, M.; Toner, J. Is Generalised Cost Justified in Travel Demand Analysis? Transportation 2020, 47, 75–108. [Google Scholar] [CrossRef] [Green Version]
- Cherlow, J.R. Measuring Values of Travel Time Savings. J. Consum. Res. 1981, 7, 360–371. [Google Scholar] [CrossRef]
- Abrantes, P.A.; Wardman, M.R. Meta-analysis of UK Values of Travel Time: An Update. Transp. Res. Part A Policy Pract. 2011, 45, 1–17. [Google Scholar] [CrossRef]
- Ye, R.; Titheridge, H. Satisfaction with the Commute: The Role of Travel Mode Choice, Built Environment and Attitudes. Transp. Res. Part D 2017, 52, 535–547. [Google Scholar] [CrossRef]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring Walkability for Distinct Pedestrian Groups with a Participatory Assessment Method. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Nielsen, T.A.S.; Skov-Petersen, H. Bikeability—Urban Structures Supporting Cycling. Effects of Local, Urban and Regional Scale Urban form Factors on Cycling from Home and Workplace Locations in Denmark. J. Transp. Geogr. 2018, 69, 36–44. [Google Scholar] [CrossRef]
- Schaap, N.; Harms, L.; Kansen, M.; Wüst, H. Cycling and Walking: The Grease in Our Mobility Chain; KiM Netherlands Institute for Transport Policy Analysis: Den Haag, The Netherlands, 2016. [Google Scholar]
- Yang, Y.; Diez-Roux, A.V. Walking Distance by Trip Purpose and Population Subgroups. Am. J. Prev. Med. 2012, 43, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ryus, P.; Danaher, A.; Walker, M.; Nichols, F.; Carter, B.; Ellis, E.; Cherrington, L.; Bruzzone, A. Quality of Service, Ridership and Service Cost. In Transit Capacity and Quality of Service Manual; Transit Cooperative Research Program: Washington, DC, USA, 2013. [Google Scholar]
- De Souza, A.M.; Braun, T.; Villas, L. Efficient Context-Aware Vehicular Traffic Re-Routing Based on Pareto-Optimality: A Safe-Fast Use Case. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2905–2910. [Google Scholar] [CrossRef]
- Kraus, S.; Arkin, R.C. Strategic Negotiation in Multiagent Environments; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Briggs, R. Normative Theories of Rational Choice: Expected Utility. In The Stanford Encyclopedia of Philosophy; Zalta, E., Ed.; Center for the Study of Language and Information (CSLI): Stanford, CA, USA, 2017. [Google Scholar]
- Survey, A.C. Selected Economic Characteristics: 2013–2017 ACS 5-Year Estimates. 2018. Available online: https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2017/5-year.html (accessed on 12 May 2021).
- Arabi, M.; Beheshtitabar, E.; Ghadirifaraz, B.; Forjanizadeh, B. Optimum Locations for Intercity Bus Terminals with the AHP Approach—Case Study of the City of Esfahan. Int. J. Environ. Ecol. Eng. 2015, 9, 545–551. [Google Scholar]
- Munoz-Organero, M.; Ruiz-Blaquez, R.; Sánchez-Fernández, L. Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Comput. Environ. Urban Syst. 2018, 68, 1–8. [Google Scholar] [CrossRef] [Green Version]
0 | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
[%] | 0% | 2.72% | 7.39% | 20.09% | 54.60% | 148.41% |
Trips/Flow | Duration | Length | |
---|---|---|---|
High Peak Weekdays (18:00–24:00) | 5780 | 13.6 min | 1.87 km |
Low Peak Weekdays (08:00–17:00) | 6453 | 13.7 min | 2.03 km |
Weekend Peak Weekends (11:00–02:00) | 2378 | 15.6 min | 2.32 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, D.O.; Maia, G.; Braun, T.; Loureiro, A.A.F.; Peixoto, M.L.M.; Villas, L.A. Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips. Appl. Sci. 2021, 11, 4523. https://doi.org/10.3390/app11104523
Rodrigues DO, Maia G, Braun T, Loureiro AAF, Peixoto MLM, Villas LA. Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips. Applied Sciences. 2021; 11(10):4523. https://doi.org/10.3390/app11104523
Chicago/Turabian StyleRodrigues, Diego O., Guilherme Maia, Torsten Braun, Antonio A. F. Loureiro, Maycon L. M. Peixoto, and Leandro A. Villas. 2021. "Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips" Applied Sciences 11, no. 10: 4523. https://doi.org/10.3390/app11104523
APA StyleRodrigues, D. O., Maia, G., Braun, T., Loureiro, A. A. F., Peixoto, M. L. M., & Villas, L. A. (2021). Exploring Hybrid-Multimodal Routing to Improve User Experience in Urban Trips. Applied Sciences, 11(10), 4523. https://doi.org/10.3390/app11104523