Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characteristics and Sample Preparation
2.2. Testing Progress
3. Results and Discussion
3.1. The Failure Pattern under Compression and Brazilian Testing
3.1.1. The Acoustic Emission Characteristics of Frozen SRM Samples
3.1.2. The Ultrasonic Plus Velocity Characteristics of FSRM
3.2. Morphology of Frozen Soil–rock Interface
3.3. The Results of UCS and Indirect Tension Strength Analysis
3.3.1. The Uniaxial Compression Strength Analysis
3.3.2. The Indirect Tension Strength Analysis
3.4. The Failure Model and the Evolution of Crack Propagation at Soil–Rock Interface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xue, Y.G.; Meng, K.F.; Yang, W.M.; Qiu, D.H.; Su, M.X.; Fu, K.; Ma, X.M. Main unfavorable geological conditions and engineering geological problems along Sichuan—Tibet railway. Chin. J. Rock Mech. Eng. 2020, 39, 445–468. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Q.; Wang, Z.; Zhao, W.; Zhu, L. Characteristics of Temperature Field of Coarse-grained soil Slope in Seasonal Frozen Soil Region Along Sichuan-Tibet Railway. Rail Eng. 2017, 5, 95–99. [Google Scholar]
- Lu, C.; Cai, C. Challenges and Countermeasures for Construction Safety during the Sichuan–Tibet Railway Project. Engineering 2019, 5, 833–838. [Google Scholar] [CrossRef]
- Jin, H.; Wei, Z.; Wang, S.; Yu, Q.; Lü, L.; Wu, Q.; Ji, Y. Assessment of frozen-ground conditions for engineering geology along the Qinghai–Tibet highway and railway, China. Eng. Geol. 2008, 101, 96–109. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, Q.; Ren, X.H.; Wen, J.Q. Experimental Study on Shear Strength of Seasonal Coarse-grained Frozen Soil Along Sichuan-Tibet Railway. J. Chin. Railw. Soc. 2018, 40, 107–111. [Google Scholar]
- Wang, J.; Jia, K.; Rafique, R.; Guo, L.; Yu, Q.; Yue, Y.; Yuan, C. Changes of backfill soil of tower foundation in the permafrost regions with warm ice-rich frozen soil on the Qinghai–Tibet Plateau. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Li, Y.R. Effects of particle shape and size distribution on the shear strength behavior of composite soils. Bull. Eng. Geol. Environ. 2013, 72, 371–381. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xu, W.J.; Yu, Y.Z. Triaxial tests of soil–rock mixtures with different rock block distributions. Soils Found 2016, 56, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Afifipour, M.; Moarefvand, P. Mechanical behavior of bimrocks having high rock block proportion. Int. J. Rock Mech. Min. Sci. 2014, 65, 40–48. [Google Scholar] [CrossRef]
- Xu, W.J.; Hu, L.M.; Gao, W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam. Int. J. Rock Mech. Min. Sci. 2016, 86, 166–178. [Google Scholar] [CrossRef]
- Kahraman, S.; Alber, M. Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. Int. J. Rock Mech. Min. Sci. 2006, 43, 1277–1287. [Google Scholar] [CrossRef]
- Coli, N.; Berry, P.; Boldini, D. In situ non-conventional shear tests for the mechanical characterisation of a bimrock. Int. J. Rock Mech. Min. Sci. 2011, 48, 95–102. [Google Scholar] [CrossRef]
- Xu, W.J.; Yue, Z.Q.; Hu, R.L. Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method. Int. J. Rock Mech. Min. Sci. 2008, 45, 749–762. [Google Scholar] [CrossRef]
- Kalender, A.; Sonmez, H.; Medley, E.; Tunusluoglu, C.; Kasapoglu, K.E. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Eng. Geol. 2014, 183, 65–79. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.H.; Hu, Y.Z. X-ray computed tomography (CT) observations of crack damage evolution in soil-rock mixture during uniaxial deformation. Arab. J. Geosci. 2018, 11, 199. [Google Scholar] [CrossRef]
- Sun, H.F.; Yang, Z.K.; Xing, M.X.; Ju, Y.; Yang, Y.M. CT Investigation of Fracture Mechanism of Soil-Rock Mixtures. Appl. Mech. Mater. 2012, 204–208, 67–71. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.H.; Hu, Y.Z. Use of X-ray computed tomography to investigate the effect of rock blocks on meso-structural changes in soil-rock mixture under triaxial deformation. Constr. Build. Mater 2018, 164, 386–399. [Google Scholar] [CrossRef]
- Sonmez, H.; Tuncay, E.; Gokceoglu, C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci. 2004, 41, 717–729. [Google Scholar] [CrossRef]
- Rotta, G.; Consoli, N.; Prietto, P.; Coop, M.; Graham, J. Isotropic yielding in an artificially cemented soil cured under stress. Geotechnique 2003, 53, 493–501. [Google Scholar] [CrossRef]
- Akram, M.; Sharrock, G. Physical and numerical investigation of a cemented granular assembly of steel spheres. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1896–1934. [Google Scholar] [CrossRef]
- Saiang, D.; Malmgren, L.; Nordlund, E. Laboratory Tests on Shotcrete-Rock Joints in Direct Shear, Tension and Compression. Rock Mech. Rock Eng. 2005, 38, 275–297. [Google Scholar] [CrossRef]
- Fourie, W.J.; Barnes, D.L.; Shur, Y. The formation of ice from the infiltration of water into a frozen coarse grained soil. Cold Reg. Sci. Technol. 2007, 48, 118–128. [Google Scholar] [CrossRef]
- Fitzsimons, S.; McManus, K.; Lorrain, R. Structure and strength of basal ice and substrate of a dry-based glacier: Evidence for substrate deformation at sub-freezing temperatures. Ann. Glaciol. 1999, 28, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Nickling, W.G.; Bennett, L. The Shear Strength Characteristics of Frozen Coarse Granular Debris. J. Glaciol. 1984, 30, 348–357. [Google Scholar] [CrossRef]
- Arenson, L.; Sego, D. The effect of salinity on the freezing of coarse-grained sands. Can. Geotech. J. 2006, 43, 325–337. [Google Scholar] [CrossRef]
- Arenson, L.; Springman, S. Triaxial constant stress and constant strain rate test on ice-rich permafrost samples. Can. Geotech. J. 2005, 42, 412–430. [Google Scholar] [CrossRef]
- Qi, C.Q.; Wang, Z.K.; Li, L.Y. Influence of temperature and ice content on mechanical properties of frozen rock-soil mixture. J. Eng. Geol. 2016, 24, 1112–1117. [Google Scholar]
- Tavana, H.; Neumann, A. Recent progress in the determination of solid surface tensions from contact angles. Adv. Colloid Interface Sci. 2007, 132, 1–32. [Google Scholar] [CrossRef]
- Medley, E. The Engineering Characterization of Melanges and Similar Block-In-Matrix Rocks (Bimrocks). Ph.D. Thesis, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- Medley, E.; Lindquist, E.S. The engineering significance of the scale-independence of some Franciscan melanges in California, USA. In Proceedings of the 35th US Rock Mechanics Symposium, Reno, NV, USA, 5–7 June 1995; Daemen, J., Schultz, R., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 904–917. [Google Scholar]
- MWRPRC (Ministry of Water Resources of the People’s Repoblic of China). GB/T 50123-1999: Standard for Soil Tests Method; MWRPRC: Beijing, China, 1999. [Google Scholar]
- Wang, Y.; Li, X.; Zheng, B.; Zhang, B.; Wang, J.B. Real-time ultrasonic experiments and mechanical properties of soil and rock mixture during triaxial deformation. Géotech. Lett. 2015, 5, 281–286. [Google Scholar] [CrossRef]
- Guo, P.; Su, X. Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 2007, 44, 579–591. [Google Scholar] [CrossRef]
- Mair, K.; Frye, K.M.; Marone, C. Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res. Solid Earth. 2002, 107, ECV 4-1–ECV 4-9. [Google Scholar] [CrossRef]
- Ahern, K. Image-Pro Plus (Media Cybermetics Company, MD, USA) Image-Pro Plus. Biotechnol. Softw. Internet J. 1998, 15, 10–15. [Google Scholar]
- Geometrical Product Specifications (GPS)—Surface Texture: Profile Method: Terms, Definitions and Surface Texture Parameters; ISO 4287:1997; ISO: Geneva, Switzerland, 1997.
- Sönmez, H.; Gokceoglu, C.; Tuncay, E.; Medley, E.; Nefeslioglu, H. Relationships between Volumetric Block Proportions and Overall UCS of a Volcanic Bimrock. Felsbau 2004, 22, 26–34. [Google Scholar]
- Lindquist, E.S. The Strength and Deformation of Melange. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- Li, Z.Q.; Wang, W.; Shi, S.Q. A Test Method for Shear Strength of Landslide and Deformation of Shear Band. China Patent ZL2015103594909, 29 July 2017. [Google Scholar]
- Slatalla, N.; Alber, M.; Kahraman, S. Analyses of acoustic emission response of a fault breccia in uniaxial deformation. Bull. Eng. Geol. Environ. 2010, 69, 455–463. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Springman, S. Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C. Can. Geotech. J. 2014, 51, 1178–1195. [Google Scholar] [CrossRef]
- Ketcham, R.; Carlson, W. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci. 2001, 27, 381–400. [Google Scholar] [CrossRef]
- Lei, X.L.; Kusunose, K.; Rao, M.V.M.S.; Nishizawa, O.; Satoh, T. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J. Geophys. Res. Solid Earth. 2000, 105, 6127–6139. [Google Scholar] [CrossRef]
- Manthei, G. Characterization of Acoustic Emission Sources in a Rock Salt Specimen under Triaxial Compression. Bull. Seismol. Soc. Am. 2005, 95, 1674–1700. [Google Scholar] [CrossRef]
- ISRM. Suggested Methods for Determining Tensile Strength of Rock Materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
Ice–Rock Mixture | T | σc (MPa) | σt (MPa) | FSRM | T | σc (MPa) | σt (MPa) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | Smooth | Rough | Smooth | Rough | (°C) | Smooth | Rough | Smooth | Rough | ||
1 | −10 | 4.867 | 6.405 | 0.843 | 1.28 | 1 | −10 | 3.398 | 3.898 | 0.725 | 0.931 |
2 | −10 | 5.825 | 6.320 | 0.877 | 1.315 | 2 | −10 | 3.469 | 3.907 | 0.844 | 0.872 |
3 | −10 | 6.157 | 7.116 | 0.901 | 1.401 | 3 | −10 | 3.836 | 4.109 | 0.775 | 0.860 |
4 | −20 | 6.988 | 10.691 | 1.23 | 1.646 | 4 | −20 | 5.944 | 7.684 | 1.574 | 1.728 |
5 | −20 | 7.165 | 9.757 | 1.003 | 1.686 | 5 | −20 | 6.500 | 7.614 | 1.631 | 1.778 |
6 | −20 | 7.033 | 9.095 | 1.07 | 1.590 | 6 | −20 | 6.380 | 6.904 | 1.485 | 1.959 |
7 | −30 | 8.703 | 12.871 | 1.553 | 2.536 | 7 | −30 | 9.153 | 11.462 | 2.165 | 2.536 |
8 | −30 | 8.266 | 13.308 | 1.477 | 2.484 | 8 | −30 | 9.674 | 11.888 | 2.176 | 2.556 |
9 | −30 | 9.058 | 11.899 | 1.323 | 2.458 | 9 | −30 | 9.710 | 11.237 | 2.305 | 2.581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Li, Z.; Tian, Y.; Hu, R. Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension. Appl. Sci. 2021, 11, 461. https://doi.org/10.3390/app11010461
Hu F, Li Z, Tian Y, Hu R. Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension. Applied Sciences. 2021; 11(1):461. https://doi.org/10.3390/app11010461
Chicago/Turabian StyleHu, Feng, Zhiqing Li, Yifan Tian, and Ruilin Hu. 2021. "Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension" Applied Sciences 11, no. 1: 461. https://doi.org/10.3390/app11010461
APA StyleHu, F., Li, Z., Tian, Y., & Hu, R. (2021). Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension. Applied Sciences, 11(1), 461. https://doi.org/10.3390/app11010461