A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm
Abstract
:1. Introduction
2. Characterization and Preparation of the GO-Based Saturable Absorber
3. Q-Switching of a 2058-nm Fiber Laser
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Young, R.J.; Barnes, N.P. Profiling atmospheric water vapor using a fiber laser lidar system. Appl. Opt. 2010, 49, 562–567. [Google Scholar] [CrossRef] [PubMed]
- McAleavey, F.J.; O’Gorman, J.; Donegan, J.F.; MacCraith, B.D.; Hegarty, J.; Maze, G. Narrow linewidth, tunable Tm/sup 3+/-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE J. Sel. Top. Quantum Electron. 1997, 3, 1103–1111. [Google Scholar] [CrossRef]
- Todorov, F.; Aubrecht, J.; Peterka, P.; Schreiber, O.; Jasim, A.A.; Mrázek, J.; Podrazký, O.; Kamrádek, M.; Kanagaraj, N.; Grábner, M.; et al. Active optical fibers and components for fiber lasers emitting in the 2-μm spectral range. Materials 2020, 13, 5177. [Google Scholar] [CrossRef] [PubMed]
- Fried, N.M.; Murray, K.E. High-Power Thulium Fiber Laser Ablation of Urinary Tissues at 1.94 µm. J. Endourol. 2005, 19, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives [Invited]. J. Opt. Soc. Am. B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Keller, U.; Weingarten, K.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.; Fluck, R.; Honninger, C.; Matuschek, N.; Der Au, J.A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Set, S.Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes. J. Light. Technol. 2004, 22, 51–56. [Google Scholar] [CrossRef]
- Yamashita, S.; Inoue, Y.; Maruyama, S.; Murakami, Y.; Yaguchi, H.; Jablonski, M.; Set, S.Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 2004, 29, 1581–1583. [Google Scholar] [CrossRef]
- Wang, F.; Rozhin, A.G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I.H.; Milne, W.I.; Ferrari, A.C. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon. 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Weigand, R.; Balmaseda, M.S.; Guerra, J.M. Q-Switched Operation with Carbon-Based Saturable Absorbers in a Nd:YLF Laser. Appl. Sci. 2015, 5, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Liu, C.; Ye, C.; Luo, Z.; Cheng, H.; Wu, D.; Zheng, Y.; Liu, Z.; Qu, B. High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. Opt. Express 2013, 21, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Koo, J.; Park, J.; Song, Y.-W.; Jhon, Y.M.; Lee, K.; Lee, S.; Lee, J.H. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. Opt. Express 2013, 21, 20062–20072. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, C.; Huang, Y.; Wu, D.; Wu, J.; Xu, H.; Cai, Z.; Lin, Z.; Sun, L.; Weng, J. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 0902708. [Google Scholar]
- Jung, M.; Lee, J.; Koo, J.; Park, J.; Song, Y.-W.; Lee, K.; Lee, S.; Lee, J.H. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 7865–7874. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, S.-F.; Chi, Y.-C.; Wu, C.-L.; Cheng, C.-H.; Tseng, W.-H.; He, J.-H.; Wu, C.-I.; Lee, C.-K.; Lin, G.-R. Using n- and p-Type Bi2Te3 Topological Insulator Nanoparticles to Enable Controlled Femtosecond Mode-Locking of Fiber Lasers. ACS Photon. 2015, 2, 481–490. [Google Scholar] [CrossRef]
- Bogusławski, J.; Soboń, G.; Tarnowski, K.; Zybała, R.; Mars, K.; Mikuła, A.; Abramski, K.M.; Sotor, J. All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2Te3 saturable absorber. Opt. Eng. 2016, 55, 81316. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Lee, J.; Jhon, J.M.; Lee, J.H. Topological insulator for mode-locking of 2-μm fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1102208. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, S.; Yang, K.; Song, W.-H.; Qiao, W.; Wu, C.-L.; Zhao, J.; Li, G.; Li, D.; Li, T.; et al. High-quality 2-μm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators. Photon. Res. 2018, 6, 314–320. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T.; Lee, J.H. Investigation into nonlinear optical absorption property of CoSb3 skutterudite in the 2 μm spectral region. Opt. Laser Technol. 2020, 129, 106274. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Zhang, X.; Yang, K.; Zhao, J.; Zhao, S.; Li, T.; Qiao, W.; Chu, H.; Qiao, J.; Wang, J.; et al. High-Peak Power Passively Q-Switched 2-μm Laser with MoS2 Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 66–70. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Y.; Ma, C.; Han, L.; Jiang, B.; Gan, X.; Hua, S.; Zhang, W.; Mei, T.; Zhao, J. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, srep07965. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-Y.; Yang, S.; Li, C.; Lin, X. Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition. Opt. Laser Technol. 2019, 111, 571–574. [Google Scholar] [CrossRef]
- Woodward, R.I.; Howe, R.C.T.; Runcorn, T.H.; Hu, G.; Torrisi, F.; Kelleher, E.J.R.; Hasan, T. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 2015, 23, 20051–20061. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Koo, J.; Lee, J.; Jhon, Y.M.; Lee, J.H. All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber. Opt. Mater. Express 2017, 7, 2968–2979. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Liu, W.-J.; Yan, P.; Lu, W.; Li, J.; Chen, H.; Jiang, Z.; Wang, J.; Zhang, W.; et al. Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Mao, D.; Du, B.; Xiaoyang, S.; Zhang, S.; Wang, Y.; Zhang, W.; Shengli, Z.; Cheng, H.; Zeng, H.; Zhao, J. Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small 2016, 12, 1489–1497. [Google Scholar] [CrossRef]
- Mao, D.; Cui, X.; Gan, X.; Li, M.; Zhang, W.; Lu, H.; Zhao, J. Passively Q-switched and mode-locked fiber laser based on an ReSe2 saturable absorber. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1100406. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Kwon, S.; Shin, B.; Lee, J.H. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker. Photon Res. 2019, 7, 984–993. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Lee, J.; Seo, M.; Lee, J.H.; Jhon, Y.M. van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorber. Adv. Opt. Mater. 2019, 7, 1801745. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, G.; Chen, S.; Guo, Z.; Yu, X.; Zhao, C.; Zhang, H.; Bao, Q.; Wen, S.; Tang, D.; et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation. Opt. Express 2015, 23, 12823–12833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Zheng, X.; Yin, K.; Cheng, X.; Jiang, T. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets. Opt. Mater. Express 2016, 6, 603–609. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Abramski, K.M. Black phosphorus saturable absorber for ultrashort pulse generation. Appl. Phys. Lett. 2015, 107, 051108. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Xu, Y.; Tian, Q.; Liu, L.; Kang, Z.; Yang, R.; Qin, G.; Qin, W. Passively Q-switching induced by gold nanocrystals. Appl. Phys. Lett. 2012, 101, 151122. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, M.Y.; Gao, X.J.; Li, N.; Yin, S.Y.; Qin, G.S.; Qin, W.P. Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber. Laser Phys. Lett. 2015, 12, 045105. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Lee, J.; Lee, J.H. End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber. J. Lightwave Technol. 2016, 34, 5250–5257. [Google Scholar] [CrossRef]
- Dussardier, B.; Maria, J.; Peterka, P. Passively Q-switched ytterbium- and chromium-doped all-fiber laser. Appl. Opt. 2011, 50, E20–E23. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 2018, 12, 1700229. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photon. 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Avouris, P.; Freitag, M. Graphene Photonics, Plasmonics, and Optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 72–83. [Google Scholar] [CrossRef]
- Hendry, E.; Hale, P.J.; Moger, J.J.; Savchenko, A.K.; Mikhailov, S.A. Coherent Nonlinear Optical Response of Graphene. Phys. Rev. Lett. 2010, 105, 097401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nat. Cell Biol. 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Zhang, H.; Wang, B.B.; Ni, Z.Z.; Lim, C.H.Y.X.C.; Wang, Y.Y.; Tang, D.Y.D.; Loh, K.P. Broadband graphene polarizer. Nat. Photon. 2011, 5, 411–415. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, M.; Weng, J.; Huang, G.; Xu, H.; Ye, C.; Cai, Z. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010, 35, 3709–3711. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, J.; Wang, P. Graphene-based passively Q-switched 2 μm thulium-doped fiber laser. Opt. Commun. 2012, 285, 5319–5322. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, T.; Zhang, B.; Li, M.; Guo, L.; Chen, K.P. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Appl. Phys. Lett. 2013, 102, 131117. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, K.; Szydłowska, B.M.; Baker-Murray, A.A.; Wang, J.-J.; Feng, Y.; Zhang, X.; Wang, J.; Blau, W.J. Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 μm Wavelength Region. Laser Photon. Rev. 2017, 11, 1700166. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Zhang, H.; Qin, J.; Lu, Y.; Xu, C.; Li, S.; Shen, Y.; Yang, W.; Yang, Y.; et al. Passively Q-switched operation of a Tm, Ho:LuVO4 laser with a graphene saturable absorber. Appl. Sci. 2018, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, D.; Gerosa, R.M.; Pellicer, F.N.; Zapata, J.D.; Domingues, S.H.; De Souza, E.A.T.; Saito, L.A.M. Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express 2017, 8, 144–156. [Google Scholar] [CrossRef]
- Ahmad, H.; Soltani, S.; Thambiratnam, K.; Yasin, M.; Tiu, Z. Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol. 2019, 50, 177–182. [Google Scholar] [CrossRef]
- Yin, K.; Zhang, B.; Xue, G.; Hou, J. High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm. Opt. Express 2014, 22, 19947–19952. [Google Scholar] [CrossRef]
- Soltanian, M.R.K.; Ahmad, H.; Khodaie, A.; Amiri, I.; Ismail, M.F.I.M.F.; Harun, S.W. A Stable Dual-wavelength Thulium-doped Fiber Laser at 1.9 μm Using Photonic Crystal Fiber. Sci. Rep. 2015, 5, 14537. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Boyland, A.J.; Sahu, J.K.; Clarkson, W.A.; Ibsen, M. High-Power Single-Frequency Thulium-Doped Fiber DBR Laser at 1943 nm. IEEE Photon. Technol. Lett. 2011, 23, 417–419. [Google Scholar] [CrossRef]
- Li, Z.; Heidt, A.M.; Daniel, J.M.O.; Jung, Y.; Alam, S.U.; Richardson, D.J. Thulium-doped fiber amplifier for optical communications at 2 μm. Opt. Express 2013, 21, 9289–9297. [Google Scholar] [CrossRef] [Green Version]
- Hemming, A.; Simakov, N.; Haub, J.; Carter, A. A review of recent progress in holmium-doped silica fibre sources. Opt. Fiber Technol. 2014, 20, 621–630. [Google Scholar] [CrossRef]
- Simakov, N.; Li, Z.; Jung, Y.; Daniel, J.M.O.; Barua, P.; Shardlow, P.C.; Liang, S.; Sahu, J.K.; Hemming, A.; Clarkson, W.A.; et al. High gain holmium-doped fibre amplifiers. Opt. Express 2016, 24, 13946–13956. [Google Scholar] [CrossRef] [Green Version]
- Simakov, N.; Hemming, A.; Clarkson, W.A.; Haub, J.; Carter, A. A cladding-pumped, tunable holmium doped fiber laser. Opt. Express 2013, 21, 28415–28422. [Google Scholar] [CrossRef] [PubMed]
- Hemming, A.; Bennetts, S.; Simakov, N.; Davidson, A.; Haub, J.; Carter, A. High power operation of cladding pumped holmium-doped silica fibre lasers. Opt. Express 2013, 21, 4560–4566. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.S.; Ottaway, D.; Munch, J.; Lancaster, D.G.; Bennetts, S.; Jackson, S.D. Gain-switched holmium-doped fibre laser. Opt. Express 2009, 17, 20872–20877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, J.; Wang, Q.; Luo, T.; Case, B.; Jiang, S.; Amzajerdian, F.; Yu, J. Single-frequency gain-switched Ho-doped fiber laser. Opt. Lett. 2012, 37, 3795–3797. [Google Scholar] [CrossRef]
- Luo, H.; Liu, F.; Li, J.; Liu, Y. High repetition rate gain-switched Ho-doped fiber laser at 2.103 μm pumped by h-shaped mode-locked Tm-doped fiber laser at 1.985 μm. Opt. Express 2018, 26, 26485–26494. [Google Scholar] [CrossRef]
- Li, P.; Ruehl, A.; Grosse-Wortmann, U.; Hartl, I. Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm. Fiber Lasers XII Technol. Syst. Appl. 2015, 9344, 6859–6862. [Google Scholar] [CrossRef]
- Chamorovskiy, A.; Marakulin, A.V.; Kurkov, A.; Okhotnikov, O.G. Tunable Ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber. Laser Phys. Lett. 2012, 9, 602–606. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Dużyńska, A.; Zdrojek, M.; Sotor, J. Metallic carbon nanotube-based saturable absorbers for holmium-doped fiber lasers. Opt. Express 2019, 27, 11361–11369. [Google Scholar] [CrossRef]
- Sotor, J.; Pawliszewska, M.; Sobon, G.; Kaczmarek, P.; Przewolka, A.; Pasternak, I.; Cajzl, J.; Peterka, P.; Honzátko, P.; Kašík, I.; et al. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. 2016, 41, 2592–2595. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Martynkien, T.; Przewłoka, A.; Sotor, J. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. 2017, 43, 38–41. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Ge, Y.; Li, Z.; Zhang, H.; Sotor, J. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Opt. Express 2017, 25, 16916–16921. [Google Scholar] [CrossRef] [PubMed]
- Chamorovskiy, A.; Marakulin, A.V.; Kurkov, A.; Leinonen, T.; Okhotnikov, O.G. High-Repetition-Rate Q-Switched Holmium Fiber Laser. IEEE Photonics J. 2012, 4, 679–683. [Google Scholar] [CrossRef]
- Kurkov, A.; Sholokhov, E.; Marakulin, A.; Minashina, L. Dynamic behavior of laser based on the heavily holmium doped fiber. Laser Phys. Lett. 2010, 7, 587–590. [Google Scholar] [CrossRef]
- Sholokhov, E.; Marakulin, A.; Kurkov, A.; Tsvetkov, V. All-fiber Q-switched holmium laser. Laser Phys. Lett. 2011, 8, 382–385. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, P.; Miao, Y.; Zhang, H.; Xiao, H.; Wang, X.; Liu, Z. High power, compact, passively Q-switched Ho-doped fiber laser tandem pumped by a 1150 nm Raman fiber laser. Laser Phys. Lett. 2014, 11, 095101. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.S.; Basko, D.M.; Ferrari, A.C. Raman Spectroscopy of Graphene Edges. Nano Lett. 2009, 9, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Kim, K.K.; Benayad, A.; Yoon, S.; Park, H.K.; Jung, I.; Jin, M.H.; Jeong, H.; Kim, J.M.; Choi, J.; et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- Wu, K.; Chen, B.; Zhang, X.; Zhang, S.; Guo, C.; Li, C.; Xiao, P.; Wang, J.; Zhou, L.; Zou, W.; et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: Review and perspective (invited). Opt. Commun. 2018, 406, 214–229. [Google Scholar] [CrossRef]
- Huang, C.; Tang, Y.; Wang, S.; Zhang, R.; Zheng, J.; Xu, J. Theoretical Modeling of Ho-Doped Fiber Lasers Pumped by Laser-Diodes Around 1.125 μm. J. Light. Technol. 2012, 30, 3235–3240. [Google Scholar] [CrossRef]
- Peterka, P.; Koška, P.; Čtyroký, J. Reflectivity of superimposed Bragg gratings induced by longitudinal mode instabilities in fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 0902608. [Google Scholar] [CrossRef]
- Aubrecht, J.; Peterka, P.; Koška, P.; Podrazký, O.; Todorov, F.; Honzátko, P.; Kašík, I. Self-swept holmium fiber laser near 2100 nm. Opt. Express 2017, 25, 4120–4125. [Google Scholar] [CrossRef] [PubMed]
- Herda, R.; Kivistö, S.; Okhotnikov, O.G. Dynamic gain induced pulse shortening in Q-switched lasers. Opt. Lett. 2008, 33, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, J.H. A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm. Appl. Sci. 2021, 11, 407. https://doi.org/10.3390/app11010407
Lee J, Lee JH. A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm. Applied Sciences. 2021; 11(1):407. https://doi.org/10.3390/app11010407
Chicago/Turabian StyleLee, Jinho, and Ju Han Lee. 2021. "A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm" Applied Sciences 11, no. 1: 407. https://doi.org/10.3390/app11010407
APA StyleLee, J., & Lee, J. H. (2021). A Passively Q-Switched Holmium-Doped Fiber Laser with Graphene Oxide at 2058 nm. Applied Sciences, 11(1), 407. https://doi.org/10.3390/app11010407